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1. ABSTRACT

Electron backscatter diffraction (EBSD) is a widely used technique for the determination of
crystal structure information, orientation, and strain data from Kikuchi diffraction patterns.
Realistic pattern simulations play a key role in enhancing the resolution limits achievable by
EBSD systems. We explore a super-sampling method for deriving high-resolution parameters
from experimental Kikuchi diffraction patterns of varying resolutions. Within this framework,
we consider the implications of factors like the precision of the projection centre and the impact
of strain tensor element noise on the accuracy of strain-induced shape changes, and we emphasise
utilising the normalised cross-correlation coefficient (NCCC) as an image similarity metric to
reliably identify small symmetry-breaking effects in experimentally detected Kikuchi patterns.

2. INTRODUCTION

The analytical capability of EBSD systems that are available to scanning electron microscopy
(SEM) lab users has steadily increased since the commercial introduction of the method and its
development into one of the standard tools of SEM-based crystallographic microstructure
analysis.

In order to quantify the performance of EBSD in terms of “resolution”, we have, for example,
aspects related to the underlying physical principles of scanning electron microscopy and to
Kikuchi pattern formation in general and, on the other hand, problems of data analysis, i.e., how
to best extract spatially resolved crystal structure information, orientations, and strain data from
measured Kikuchi patterns. In this contribution, we focus on details of EBSD pattern data
analysis approaches, while we refer the interested reader to comprehensive reviews and studies
concerning the spatial and energy resolution of EBSD [1-3].

The angular resolution is a particularly crucial parameter in EBSD systems, as it determines the
precision of the orientations acquired from experimental Kikuchi patterns through the data
analysis method. Commercial EBSD systems are largely based on the use of the Hough
transform [4] to detect linear features of the Kikuchi bands and to relate these to crystal
orientations with a precision improving from approximately 1° in early systems [5] to resolutions
well below 0.1° with improved methods that combine the Hough transform with additional
information provided by the specific shape of Kikuchi diffraction bands [6-9]. As the pixel
dimensions on the detected diffraction patterns are linked to angular ranges of scattering
directions, it might be anticipated that an improvement in pixel resolution of the captured
Kikuchi patterns will also improve the achievable angular resolution.

In the domain of pattern-based approaches, high-angular resolution EBSD (HR-EBSD)

techniques are a powerful tool especially for analysing strain in materials due to their high
sensitivity to small changes in crystal lattice parameters and orientations [10-12]. These methods
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allow for the measurement of elastic strains with a sensitivity of approximately + 2x10 [11, 13]
in the individual components of the infinitesimal strain tensor, making it suitable for studying
a variety of phenomena, including residual stresses, strain fields around defects, and the
behaviour of materials under load. HR-EBSD methods usually work best with diffraction
patterns having resolutions in the order of 1,000x1,000 pixels or more [14].

One crucial tool for pattern matching-based EBSD is the use of realistic pattern simulations,
which can significantly improve the resolution limits attainable with advanced EBSD systems.
Studies on the use of Kikuchi pattern simulations focussed on achieving high-resolution
orientation determination via pattern matching [15], tackling pseudosymmetry challenges
[15-17], and presenting novel indexing techniques like dictionary indexing [18] and spherical
indexing [19, 20]. These approaches prioritize varying levels of speed and precision. Dynamical
simulations of Kikuchi patterns [21] are anticipated to play a crucial role in deriving
high-resolution strains from experimental EBSD data. The theoretical feasibility of extracting
strain tensors from EBSD data via simulations has been previously examined using numerical
simulations of EBSD patterns [22-24]. Based on the theoretical assessment detailed in [24],
the application of pattern matching utilising binned patterns with lower resolution than those
typically employed in high-resolution EBSD applications could potentially facilitate a more
data-efficient determination of strain tensors.

We recently demonstrated in [28] that a pattern matching approach based on simulated
high-resolution patterns is able to closely reproduce results obtained previously for indentation
experiments on Si from full resolution raw patterns (e.g., 1,244x1,024 in 16-bit resolution) by
simulation-based super-sampling of significantly lower resolution patterns (e.g., 311x256) at
8-bit. This means that data storage requirements for the same experiment would be reduced by
a factor of 32 in this example case (factors of 2 due to 16/8 bit, and 16 due to 4x4 binning).
In the present contribution, we discuss additional details related to the performance of the
super-resolution pattern matching approach presented in [28] with respect to the influence of the
projection centre precision, the noise-related limits on the knowledge of shape change under
strain, as well as the sensitivity of EBSD pattern matching to symmetry breaking using the
example of handedness in quartz.

2.1. Simulation-based super-resolution pattern matching

In the pattern matching method discussed here, we use the term super-resolution to describe
a method designed to infer high-resolution parameter output from low-resolution image input.

The principle of parameter-super-resolution EBSD pattern matching is explained in Fig. 1, where
we argue that a high-resolution simulation can act as a fill-in model for the diffraction
sub-structure to describe small changes within the binned, large pixels of a low-resolution
pattern. In a sense, the binned pattern is a view of a higher-resolution pattern as seen behind
frosted glass pane, and the high-resolution simulation can predict how a rotated and strained
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pattern would look like when seen blurred through the glass. To control the amount of
super-sampling in the implemented pattern matching method, one can choose a super-sampling
parameter ns which corresponds to a grid of nsx ns regular spaced theoretical sub-pixels inside
of each experimental pixel area.

(a) full resolution experiment (b) binned experimental data

Principle of super-resolution Kikuchi pattern parameter fitting [28]. Simulated Kikuchi
pattern data with 1,244x1,024 pixels on the detector area (c) is used to predict
high-resolution parameter changes from 38x32 pixel-resolution experimental data (b) via
comparison to consistently binned simulated data (d), thus circumventing the use of
full-resolution 1,244%1,024 experimental data (a). The tolerable binning will depend on the
required resolution of the fitted parameters.

The transformation of unit vector directions [xm, ym, zm] from a spherical master Kikuchi
diffraction pattern to projected pixel centre coordinates [pi, p2, p3] on a planar screen can be
understood as a projective transformation F acting on the homogeneous coordinates [xa, yu, zm]
[23, 29, 30-35]:
XM
[ ] = F [YM Ym
Zm

= RU (1)
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The coordinates (xg, y¢) in the standard embedded projection plane at zz = 1 are given by
dehomogenisation of the projective coordinates as (xg, ) = (pi/p3, p2/p3) for all projected points
with p3 # 0 [36]. The 3x3 matrix F has 8 degrees of freedom, because scaling of F by a real
factor does not change the projective transformation [37].

As has been discussed by Maurice ef al. [38, 39], Eq. (1) can also be seen as the definition of the
deformation gradient tensor F with the polar decomposition F = RU = VR [40]. The right Biot
stretch tensor U [41] describes the distortion in the sample system, while the left Biot stretch
tensor V.= RURT can be used to describe the distortion in the rotated crystallophysical coordinate
system.

The missing 9" degree of freedom for an overall scaling in the theoretical 3x3 model matrix F
is consistent with the severely reduced experimental sensitivity of Kikuchi diffraction patterns
to a small uniform expansion of the lattice relative to the changes of angles between
crystallographic directions [42]. For the fitting approach that we use, we constrain U to be
an isochoric transformation, that is, we prescribe a unit determinant for all the matrices involved,
det F = det R=det U =1, thereby having 8 free parameters in the 3*%3 matrix F .

The current EBSD pattern simulation models still have remaining limitations (especially related
to the excess-deficiency effect [43]) that introduce severe biases in the strain results when the
ideal simulated patterns (which lack some relevant experimental features) are directly compared
to experimental ones. As discussed in [28], it should still be feasible to measure relative strains
provided the bias remains nearly constant, such as in single crystal films or individual grains of
polycrystalline samples. The relative strain then is determined with respect to reference points
that can be assumed to be strain-free or which have a known deformation state.

The super-resolution method for high-resolution determination of orientations and relative
deviatoric strain which we apply here is fully described in [28] and has been implemented in the
AZTECCRYSTAL MAPSWEEPER software in Version 3.3 (Oxford Instruments).

3. RESULTS AND DISCUSSION

3.1. Characterisation of shape changes under strain
Tensor invariants provide important information that is independent of the chosen coordinate
system. In [44] a set of invariants of the Hencky strain tensor £z = In U[41] has been suggested

to characterise changes in size and shape of a material element that are caused by a strain tensor
independently of the orientation of the cartesian axes.
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Quantitative measures of distortion (= isochoric deformation) of a crystal unit volume can be
constructed using a normalised deviator tensor & [44]:

® = dev En/K> @)
where the invariant K> is defined using the Frobenius norm ||...|2:
K> = || Eitl|2. 3)

In this way, the Hencky strain tensor can be decomposed into K> > 0 which describes how much
the shape of the unit volume changes, and @, which specifies how the shape change looks like:

Ei=K ®. 4)

Moreover, the type of distortion can be numerically characterised by the scaled determinant K3
of the normalised deviator ®:

K3 = 3V6 det . (5)

The invariant K3 is in the range [—1, 1], with the extreme cases K3 = 1 for uniaxial extension
(=equibiaxial contraction), K3 = —1 for uniaxial contraction (=equibiaxial extension), and K3 =0
for pure shear strain, where one principal axis is not stretched at all and the other two principal
axes are stretched and compressed in a reciprocal way [44].

For low strains approaching the noise level, the type of distortion inferred from the noisy strain
tensor elements should also become random and the value of K3 will then randomly vary from
map point to map point, meaning that we are unsure about the actual type of shape change.
This effect is qualitatively similar to the way the rotation axis becomes irrelevant for small
rotation angles near the noise level in EBSD [45, 46].

In order to compare experimentally the various EBSD strain analysis methods, indents in
Si wafers can serve as reproducible reference cases [25- 27]. As an example, in Fig. 2 we show
the result of an indentation experiment on a silicon wafer sample, using different binning levels
for the strain analysis.

At relatively high deformation magnitudes in the central area near the indent, as seen in the map
of K2, the corresponding map of K3 indicates uniaxial compression in blue colour (K3 = -1), which
is consistent with the expectations of FEM simulations [28]. Moreover, at the tips of the cracks
we see white spots that would indicate a pure shear distortion (K3 =~ 0).
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Figure 2. Relative isochoric strain near an indent on a Si(110) sample. Left column: Logarithm of
the deviator norm K>, right column: Distortion type K3. ESBD analysis conditions: 20 kV,
step size 1um. The reference point for the relative strain values is at (0,0).
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At lower levels of K> outside the immediate indent area, we see how K3 becomes less well
defined, as seen by more colour noise in red, white, and blue. Apparently completely random
colour noise is seen in the nominally strain-free area near the reference point (0,0) on the upper
left of the map, where the K> values also achieve their best minimum values in the range of a few
10 and below. With increasing distance away from the reference point, there are larger
systematic red or blue areas in the K3 maps, which we interpret is due to a slight remaining bias
in the pattern fitting method. We assume that inherent limitations of the applied pattern matching
projection centre calibration method [36] are causing systematic small phantom strains at large
distances from the reference point. This can also be seen by slightly changing values of K> in
the nominally strain-free area of the parts of the maps further away from the reference point.
Ideally, in the strain-free regions, a completely unbiased strain analysis method should measure
random strain tensor elements within the noise level of the method and this should lead to
uniform red-white-blue noise in all of the strain-free regions. One might thus envision utilising
the combination of K> and K3 maps from a wide-area scan of a strain-free silicon sample as
a comparison tool to verify any large-distance biases within a strain measurement technique.

Concerning the pattern resolution-dependence of the results shown in Fig. 2, we see that binning
from 622x512 to 311x256 leads to a visually a very similar result, except for the exact
distributions of K3 in the strain-free areas. The results begin to clearly deteriorate from 155x128
to 77x64 pixels resolution, where one can visually detect the appearance of a larger noise floor
in the K> signal of the strain-free areas. Analysing neighbour-pair differences for quantitative
noise estimation, we found in [28] that the estimated standard deviation of the strain norm noise
remains below 10 for patterns with resolutions down to 155x128 and 13x13 super-sampling.

The analysis of the K2 maps shown in Fig. 2 in combination with the corresponding K3 data
indicates that for strain norm noise in the order of 0.1 mm/m (10#), the specific type of distortion
becomes undetermined already for strain norms of about 1 mm/m (10%) (i.e., by estimating which
levels of the K> map correspond to the boundary between the smooth blue area of the K3 map
near the indent and the noisy areas further out). This observation implies that we can know the
total overall magnitude of a small strain much better than the actual resulting type of shape
change, which becomes unreliable already at strain norms which are about one magnitude higher
than the noise limit.

3.2. Projection centre calibration and strain sensitivity

To investigate in more detail the theoretical strain sensitivity of the super- resolution pattern
matching method [28], which might be achievable without excess-deficiency features observed
in the experiment, we examined simulated ideal pattern data from a theoretical polycrystalline
sample consisting of about 50 different randomly oriented grains. In this analysis, the strain
varies horizontally across the map from the left (x = 0.0) to the right (x = 1.0) and is described
by a strain tensor &(x) with €unax = 1 mm/m and x = 0...1 as follows:
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—Emax 0 —Emax
g(x) =x* 0 —&max —Emax |- (6)

“Emax “Emax 2 Emax

This strain state is representative for a distortion type near uniaxial extension (K3 = 1.0),
independently of the strain magnitude. The resolution of the simulated patterns in the map was
311%256 and the beam energy was 20 kV. We assumed that the sample surface plane and the
detector plane were parallel, because this setting allows us to show the implications of
an incorrect projection centre calibration for the development of phantom strains and a phantom
absence of strains. The synthetic map data was saved in the HDF5-based H5OINA format [47],
and includes 10 scan lines of strain-free areas at the top and bottom, which are used to calibrate
the projection centre on known strain-free points. The synthetic pattern data is analysed using
the AZTECCRYSTAL MAPSWEEPER software Version 3.3 (Oxford Instruments), using exactly the
same procedures as with experimentally acquired data. The H5OINA data file is available at
DOI 10.5281/zenodo.15050850 for download.

Figure 3 shows the result of the analysis when we correctly use map points in the strain-free area
itself to calibrate the projection centre. The recovered strain values correspond to the prescribed
theoretical values within numerical errors, which should be expected from an analysis that uses
the same simulated model data for the emulation of the experiment and for its analysis. We note
the random colour noise in the two strain free regions of the K3 map, which indicates the absence
of a significant systematic bias for the analysis of perfect simulated data.

Raw Deviatoric Strain [mm/m]

&n €2 CH
1.00

0.67
0.33
0.00
-0.33
-0.67
-1.00

Distortion Magnitude

3.00
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2.00
1.50
1.00
0.50
0.00

1.00
0.67
0.33
0.00
-0.33
-0.67
-1.00

— X1
50um Raster: 150x60 Step Size: 1uym Vi

Figure 3.  Simulated strain data according to Eq. (6), showing a gradient in the distortion magnitude,
and a constant distortion type near uniaxial extension (K3 = 1.0). €12 = &1 = 0.0. Distortion
magnitude = K5 (Eq. 3) in mm/m, distortion type = K3 (Eq. 5, dimensionless).
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Figure 4 shows the result of the analysis when we use map points on the strained area itself for
the calibration of the projection centre. The result is a practically complete absence of any
measured strain in the known strained region. Instead, a complementary phantom strain is
measured in the non-strained region. The cancellation of strain in the strained region and the
appearance of an opposite strain in the strain-free stripes can be understood from the structure of
the prescribed strain tensor and how a changing projection centre would be described in the
framework of Eq. (1).

Raw Deviatoric Strain [mm/m]
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50um Raster: 150x60 Step Size: 1ym Vil

Figure 4.  Same analysis as in Fig. 3, but wrongly calibrating on the strained region on the sample.
This shows a practically complete absence of any measured strain in the strained region and
a complementary phantom strain in the non-strained region.

Because we have the sample plane and the detector screen plane parallel, the ratios of the strain
tensor elements €11/e33 and e22/€33 would correspond to changes of the z-coordinate of the
projection centre (“zooming in or out of the pattern”), while the strain tensor off-diagonal
elements €13 and €23 would be equivalent to a linear translation of the projection centre x,
y-coordinates [48]. The effects of the strain tensor (6) on a projected pattern can thus be exactly
mimicked by a moving projection centre during a scan, under the special conditions we were
setting artificially. In a real experiment, this behaviour will be modified by the tilt of the surface
plane, but qualitatively it remains that calibration of a scan on strained regions will lead to
systematic errors in the strain measurement.

The only strain component that is exempt from the problem of projection centre calibration in
the present case should be €12, because we can neglect any shearing of the rigid detector screen
plane. That is why the condition of €12 = 0 in the simulated strain tensor can be used as a test of
how well the strain analysis approach recovers this condition. Figure 5 shows that our analysis
approach results in a mean value near 3x10°¢ (i.e., a minimal positive bias) with a standard
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deviation near 1x107 on ideal, simulated data using a calibrated projection centre (fixed in the
optimisation). This allows us to confirm that the numerical precision of the approach is well
below the typically observed noise levels in real experiments.

Statistics

Count: 8970

300 Mean: 0.00282x104-3m/m
Min: -0.02991x10"-3m/m
Max: 0.0296x10~-3m/m
St.-Dev.: 0.00897 x10~-3m/m

—T—r—r—r—T— T T

Strain Component €42 [mm/m]

Figure 5.  Distribution of the €1» component of the analysed simulated strain data, with a true theoretical
value of 0.0 underlying the pattern simulation.

In [24] it has been shown using ideal simulated data how a simultaneous determination of
projection centre and deformation tensor severely degrades precision. The observed drop from
basic machine precision 10 under ideal numerical conditions to 10 reflects the fact that the
simultaneous fit of projection centre and deformation (which in general includes both rotation
and strain) is poorly conditioned, as has been argued by Alkorta et al. [48]. In [49] it was found
that the extraction of the deformation state based on simulated patterns showed a mean accuracy
of 1x107 in the shear components and about 2x107 in the diagonal components (normal strains)
when optimising while including the projection centre in the fit. This approach was also applied
in [49] to experimental data in a hybrid approach that fits the reference point strain state based
on simulated data and then measures the relative strains with a conventional cross-correlation
based approach between experimental reference and experimental data patterns. Correcting the
relative experimental strains by the simulation-based reference strains, partially more consistent
strain states were observed in the shear component €12, while the agreement in the other
components was less good. These observations are in qualitative agreement with our discussion
related to €12 in the present case. Because of the equivalence of a changing projection centre and
a developing strain as seen by a projected Kikuchi pattern, our simulation-based analysis above
emphasises the need for a precise, independent, calibration of the beam position relative to the
detector with a relative error below the desired strain resolution for absolute strain determination,
because the resulting errors would appear even if the simulated Kikuchi pattern would match
practically perfectly to the experiment.
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3.3. Symmetry breaking

The action of strain on a crystalline sample can be interpreted as a local change of the crystal
unit cell, i.e., a general strain in a cubic crystal will reduce the abstract, mathematical symmetry
to triclinic. However, this apparently drastic symmetry-breaking from cubic to triclinic is not
necessarily reflected by a similarly drastic change in the diffraction pattern. Instead, the
observed Kikuchi pattern remains closely similar to the unstrained one, with hardly any
observable changes for small strains. In this sense, strain is an example for symmetry breaking
and the exact discrimination of small strains deviating from a cubic structure is related to similar
pseudosymmetry problems as the discrimination of two different crystal structures that lead to
very similar Kikuchi diffraction patterns. In both cases, it is important to quantify the sensitivity
of the measured Kikuchi patterns to the expected changes of the unit cell.

As an example for a challenging pseudosymmetry problem in ESBD, we use the example of the
discrimination of the handedness of quartz, where the expected changes in the Kikuchi pattern
between the left-handed and the right-handed modification are very small. This is because the
crystal lattice parameters of both structures are exactly the same and only the chiral sense of
arrangement of the unit cell atoms changes [50]. In [50] it was demonstrated that the
discrimination of quartz chirality is possible from single-crystal samples of known handedness
by comparison of the experimental patterns to dynamical simulations which are sensitive to the
breaking of Friedel’s law by non-centrosymmetric structures. The EBSD mapping of a locally
changing quartz chirality and the identification of characteristic domain patterns in agate has
been demonstrated in [51].

In Fig. 6, we show the effects of a pattern comparison between an experimental quartz pattern
and the two possible simulations for left-handed and right-handed quartz, respectively.
The pattern resolution is 156x128, and the pattern was measured at 15 kV beam voltage.

Position: X=120, Y=472
Phase: Quartz-new
Orientation

@1: 176,735°

©: 26,313°

92: 217,631°

Inversion: Yes
Projection Center

Pex: 0,5069

Pey: 0,6624

DD: 0,7111
Cross Correlation Coefficient

R:0,7116

Position: X=120, Y=472
Phase: Quartz-new
Orientation
@1: 176,735°
®: 26,313°
©2: 217,631°
Inversion: No
Projection Center
Pax: 0,5069
Pey: 0,6624
DD: 0,7111
Cross Correlation Coefficient
R: 0,7018

Figure 6. Change of the normalised cross-correlation coefficient for simulations corresponding to
inverted crystal structures of quartz. The two theoretical patterns show R = 0.974.

110



For the quantitative comparison of the Kikuchi patterns, we apply the normalised
cross-correlation coefficient (NCCC) R to measure the similarity of two EBSD patterns [52, 53].
It can be argued that the normalised cross-correlation coefficient is a much more reliable and
sensitive image similarity metric for comparison of very similar Kikuchi patterns than the
”Normalised Dot Product” (NDP) metric [18], which also continues to be discussed as
a similarity measure for EBSD pattern matching. The main advantage of the NCCC is that it is
intrinsically insensitive to the actual brightness and contrast of the patterns that are compared,
while the NDP is not. Moreover, while both metrics give a value of 1.0 for comparison of
a pattern with itself, the NCCC also produces consistent reference values near 0.0 for
comparisons of Kikuchi patterns to random noise, as well as for comparisons of noise to noise,
with a theoretical mean value of 0.0 in both cases. The NDP, in contrast, does not give values
near 0.0 for a comparison of random noise to random noise, but a value near 0.75 (theoretical
value 3/4) and in general it also gives a significantly different value than 0.75 for pattern-to-noise
comparison depending on the brightness and contrast of the non-noise pattern [54]. It might be
considered to be desirable that the similarity metric for an EBSD pattern compared to noise
should at least not indicate a significantly better or worse fit than a comparison of noise to noise.
The underlying reason for this undesirable bias of the NDP is that the images are normalised to
the range 0.0 - 1.0 when calculating the NDP, and thus low-intensity pixels are considered less
important by the NDP whereas high-intensity pixels are preferentially emphasised. Additionally,
in the presence of noise, even the location of the minimum values “0.0” and maximum values
“1.0” in a pattern will change and influence the NDP. Conversely, the NCCC accurately
accounts for the fact that, within a Kikuchi diffraction pattern, both high-intensity and
low-intensity pixels hold equally significant information. The pixels which form black lines are
just as crucial as those that form the white lines in a Kikuchi pattern, meaning we should focus
on local deviations from the mean intensity within a Kikuchi pattern, not on the absolute intensity
itself. This is evident from the NCCC’s computation, which is based on patterns normalised to
have a zero mean and a standard deviation of one [54]. The characteristics of the NCCC are
particularly advantageous when the difference between two potential solutions are minimal and
it is essential to avoid any bias introduced by the metric used for pattern comparison.

Concerning the comparison shown in Fig. 6, we find that the NCCC is R = 0.7116 for the best
fit pattern compared to R = 0.7018 for the alternative. In the present case, this means that the
winning solution is the one for the inverted “left-handed” structure relative to the “right-handed”
one that was used for the simulation. The observed change of AR = 0.01 between the two
possibilities may appear small but is statistically significant, as discussed in [55]. As a general
rule for typical Kikuchi patterns measured in EBSD, changes of AR = 0.01 at mean values of
R>0.5 can be assigned to true differences in the simulations, and the probability that such
changes can be caused, for example, by noise in the experimental pattern, can be neglected.
The difference AR between the two simulated patterns is R =0.974, i.e., a drop of only A=0.026
would be observed even if we would measure ideal theoretical patterns, with the correct pattern
simulation fitting perfectly with R = 1.0. Scaled to real experimental applications, we estimate
that theoretical correlation coefficients near 0.98 and below are useful indicators for
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experimentally possible discrimination of two related pseudosymmetric variants, provided that
the quality of the experimental pattern is good enough to lead to large enough correlation
coefficients between experiment and theory [55]. As an example of a complex pseudosymmetry
problem that can be solved using the pattern matching approach we refer the reader to [17],
where the distribution of six pseudosymmetric variants in CusSns has been demonstrated.

4. SUMMARY AND OUTLOOK

We have discussed advancements in electron backscatter diffraction emphasising improvements
in pattern data analysis by using a super-sampling approach based on high-resolution simulations
in combination with Kikuchi patterns of varying experimental resolutions.

A significant challenge for future improvements of the EBSD pattern matching pipeline remains
the efficient treatment of the excess-deficiency effect. This issue currently limits the achievable
accuracy of simulation-based strain determination and projection centre calibration [43].
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