
Book of Tutorials and Abstracts

EMAS 2025
18th

EUROPEAN WORKSHOP

on

MODERN DEVELOPMENTS
AND

APPLICATIONS
IN

MICROBEAM ANALYSIS

11 to 15 May 2025
at the

TecnoCampus
Mataró (Barcelona), Spain

Organized in collaboration with the 
Universitat de Barcelona, Spain

European Microbeam Analysis Society



 
 
EMAS 
European Microbeam Analysis Society eV 
www.microbeamanalysis.eu/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This volume is published by: 
  European Microbeam Analysis Society eV (EMAS) 
  EMAS Secretariat 
  c/o Eidgenössische Technische Hochschule, Institut für Geochemie und Petrologie 
  Clausiusstrasse 25 
  8092 Zürich 
  Switzerland 
 
 
 
 
© 2025 EMAS and authors 
 
ISBN 978 90 8227 6985 
NUR code: 972 – Materials Science 
 
All rights reserved.  No part of this publication may be reproduced, stored in a retrieval system, 
or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording 
or otherwise, without the prior written permission of EMAS and the authors of the individual 
contributions. 
 
 
 
  



99 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
PIXELS, PATTERNS, PSEUDOSYMMETRIES: ON RESOLUTION LIMITS OF EBSD 

Aimo Winkelmann1,2, G. Cios1, K. Mehnert2 and P. Bała1 
 
    1 AGH University of Krakow, Academic Centre for Materials and Nanotechnology (ACMiN) 
     Al. A. Mickiewicza 30, PL-30059 Krakow, Poland 
    2 ST-Development GmbH 
     Wilhelmshöhe 7, 33102 Paderborn, Germany 
    e-mail:  winkelmann@agh.edu.pl 
 
 
 
 
 
 
 
 
 
 
 
Aimo Winkelmann obtained his PhD in Physics in 2003 with a thesis entitled "Electron 
diffraction methods for structure analysis of epitaxial silicon carbide films".  From 2004 to 2013 
he worked at the Max-Planck-Institute of Microstructure Physics (Halle, Germany).  In 2012 he 
obtained his Habilitation in Experimental Physics from the Martin-Luther-University 
Halle-Wittenberg (Germany), with a thesis entitled: “Nonlinear photoemission at metal surfaces 
under the influence of spin-orbit-coupling”.  From 2013 to 2018 he was Senior Scientist EBSD 
at Bruker Nano GmbH (Berlin, Germany).  He worked from 2018 and 2019 at the Laser Zentrum 
Hannover (Germany).  Since 2015 he is Visiting Professor at the University of Strathclyde 
(Glasgow, Scotland) and since 2019  he is Associate Professor at the Academic Center for 
Materials and Nanotechnology (ACMiN) of AGH University of Krakow (Poland). 
  

 



100 

  1.  ABSTRACT 
 
Electron backscatter diffraction (EBSD) is a widely used technique for the determination of 
crystal structure information, orientation, and strain data from Kikuchi diffraction patterns.  
Realistic pattern simulations play a key role in enhancing the resolution limits achievable by 
EBSD systems.  We explore a super-sampling method for deriving high-resolution parameters 
from experimental Kikuchi diffraction patterns of varying resolutions.  Within this framework, 
we consider the implications of factors like the precision of the projection centre and the impact 
of strain tensor element noise on the accuracy of strain-induced shape changes, and we emphasise 
utilising the normalised cross-correlation coefficient (NCCC) as an image similarity metric to 
reliably identify small symmetry-breaking effects in experimentally detected Kikuchi patterns. 
 
 
  2.  INTRODUCTION 
 
The analytical capability of EBSD systems that are available to scanning electron microscopy 
(SEM) lab users has steadily increased since the commercial introduction of the method and its 
development into one of the standard tools of SEM-based crystallographic microstructure 
analysis. 
 
In order to quantify the performance of EBSD in terms of “resolution”, we have, for example, 
aspects related to the underlying physical principles of scanning electron microscopy and to 
Kikuchi pattern formation in general and, on the other hand, problems of data analysis, i.e., how 
to best extract spatially resolved crystal structure information, orientations, and strain data from 
measured Kikuchi patterns.  In this contribution, we focus on details of EBSD pattern data 
analysis approaches, while we refer the interested reader to comprehensive reviews and studies 
concerning the spatial and energy resolution of EBSD [1-3]. 
 
The angular resolution is a particularly crucial parameter in EBSD systems, as it determines the 
precision of the orientations acquired from experimental Kikuchi patterns through the data 
analysis method.  Commercial EBSD systems are largely based on the use of the Hough 
transform [4] to detect linear features of the Kikuchi bands and to relate these to crystal 
orientations with a precision improving from approximately 1° in early systems [5] to resolutions 
well below 0.1° with improved methods that combine the Hough transform with additional 
information provided by the specific shape of Kikuchi diffraction bands [6-9].  As the pixel 
dimensions on the detected diffraction patterns are linked to angular ranges of scattering 
directions, it might be anticipated that an improvement in pixel resolution of the captured 
Kikuchi patterns will also improve the achievable angular resolution. 
 
In the domain of pattern-based approaches, high-angular resolution EBSD (HR-EBSD) 
techniques are a powerful tool especially for analysing strain in materials due to their high 
sensitivity to small changes in crystal lattice parameters and orientations [10-12].  These methods  
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allow for the measurement of elastic strains with a sensitivity of approximately ± 2×10-4 [11, 13] 
in the individual components of the infinitesimal strain tensor, making it suitable for studying 
a variety of phenomena, including residual stresses, strain fields around defects, and the 
behaviour of materials under load.  HR-EBSD methods usually work best with diffraction 
patterns having resolutions in the order of 1,000×1,000 pixels or more [14]. 
 
One crucial tool for pattern matching-based EBSD is the use of realistic pattern simulations, 
which can significantly improve the resolution limits attainable with advanced EBSD systems.  
Studies on the use of Kikuchi pattern simulations focussed on achieving high-resolution 
orientation determination via pattern matching [15], tackling pseudosymmetry challenges 
[15-17], and presenting novel indexing techniques like dictionary indexing [18] and spherical 
indexing [19, 20].  These approaches prioritize varying levels of speed and precision.  Dynamical 
simulations of Kikuchi patterns [21] are anticipated to play a crucial role in deriving 
high-resolution strains from experimental EBSD data.  The theoretical feasibility of extracting 
strain tensors from EBSD data via simulations has been previously examined using numerical 
simulations of EBSD patterns [22-24].  Based on the theoretical assessment detailed in [24], 
the application of pattern matching utilising binned patterns with lower resolution than those 
typically employed in high-resolution EBSD applications could potentially facilitate a more 
data-efficient determination of strain tensors. 
 
We recently demonstrated in [28] that a pattern matching approach based on simulated 
high-resolution patterns is able to closely reproduce results obtained previously for indentation 
experiments on Si from full resolution raw patterns (e.g., 1,244×1,024 in 16-bit resolution) by 
simulation-based super-sampling of significantly lower resolution patterns (e.g., 311×256) at 
8-bit.  This means that data storage requirements for the same experiment would be reduced by 
a factor of 32 in this example case (factors of 2 due to 16/8 bit, and 16 due to 4×4 binning).  
In the present contribution, we discuss additional details related to the performance of the 
super-resolution pattern matching approach presented in [28] with respect to the influence of the 
projection centre precision, the noise-related limits on the knowledge of shape change under 
strain, as well as the sensitivity of EBSD pattern matching to symmetry breaking using the 
example of handedness in quartz. 
 
  2.1. Simulation-based super-resolution pattern matching 
 
In the pattern matching method discussed here, we use the term super-resolution to describe 
a method designed to infer high-resolution parameter output from low-resolution image input. 
 
The principle of parameter-super-resolution EBSD pattern matching is explained in Fig. 1, where 
we argue that a high-resolution simulation can act as a fill-in model for the diffraction 
sub-structure to describe small changes within the binned, large pixels of a low-resolution 
pattern.  In a sense, the binned pattern is a view of a higher-resolution pattern as seen behind 
frosted glass pane, and the high-resolution simulation can predict how a rotated and strained  
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pattern would look like when seen blurred through the glass. To control the amount of 
super-sampling in the implemented pattern matching method, one can choose a super-sampling 
parameter nS which corresponds to a grid of nS× nS regular spaced theoretical sub-pixels inside 
of each experimental pixel area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Principle of super-resolution Kikuchi pattern parameter fitting [28].  Simulated Kikuchi 

pattern data with 1,244×1,024 pixels on the detector area (c) is used to predict 
high-resolution parameter changes from 38×32 pixel-resolution experimental data (b) via 
comparison to consistently binned simulated data (d), thus circumventing the use of 
full-resolution 1,244×1,024 experimental data (a).  The tolerable binning will depend on the 
required resolution of the fitted parameters. 

 
 
The transformation of unit vector directions [xM, yM, zM] from a spherical master Kikuchi 
diffraction pattern to projected pixel centre coordinates [p1, p2, p3] on a planar screen can be 
understood as a projective transformation 𝐅 acting on the homogeneous coordinates [xM, yM, zM] 
[23, 29, 30-35]: 
 

    ൥𝑝ଵ𝑝ଶ𝑝ଷ൩ =  𝐅 ൥𝑥ெ𝑦ெ𝑧ெ൩ = 𝑹𝑼 ൥𝑥ெ𝑦ெ𝑧ெ൩        (1) 
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The coordinates (xg, yg) in the standard embedded projection plane at zg = 1 are given by 
dehomogenisation of the projective coordinates as (xg, yg) = (p1/p3, p2/p3) for all projected points 
with p3 ≠ 0 [36].  The 3×3 matrix 𝐅 has 8 degrees of freedom, because scaling of 𝐅 by a real 
factor does not change the projective transformation [37]. 
 
As has been discussed by Maurice et al. [38, 39], Eq. (1) can also be seen as the definition of the 
deformation gradient tensor 𝐅 with the polar decomposition 𝐅 = RU = VR [40].  The right Biot 
stretch tensor U [41] describes the distortion in the sample system, while the left Biot stretch 
tensor V = RURT can be used to describe the distortion in the rotated crystallophysical coordinate 
system. 
 
The missing 9th degree of freedom for an overall scaling in the theoretical 3×3 model matrix 𝐅 
is consistent with the severely reduced experimental sensitivity of Kikuchi diffraction patterns 
to a small uniform expansion of the lattice relative to the changes of angles between 
crystallographic directions [42].  For the fitting approach that we use, we constrain U to be 
an isochoric transformation, that is, we prescribe a unit determinant for all the matrices involved, 
det 𝐅  = det R = det U = 1, thereby having 8 free parameters in the  3×3 matrix 𝐅 . 
 
The current EBSD pattern simulation models still have remaining limitations (especially related 
to the excess-deficiency effect [43]) that introduce severe biases in the strain results when the 
ideal simulated patterns (which lack some relevant experimental features) are directly compared 
to experimental ones.  As discussed in [28], it should still be feasible to measure relative strains 
provided the bias remains nearly constant, such as in single crystal films or individual grains of 
polycrystalline samples.  The relative strain then is determined with respect to reference points 
that can be assumed to be strain-free or which have a known deformation state. 
 
The super-resolution method for high-resolution determination of orientations and relative 
deviatoric strain which we apply here is fully described in [28] and has been implemented in the 
AZTECCRYSTAL MAPSWEEPER software in Version 3.3 (Oxford Instruments). 
 
 
  3.  RESULTS AND DISCUSSION 
 
  3.1. Characterisation of shape changes under strain 
 
Tensor invariants provide important information that is independent of the chosen coordinate 
system.  In [44] a set of invariants of the Hencky strain tensor EH = ln U [41] has been suggested 
to characterise changes in size and shape of a material element that are caused by a strain tensor 
independently of the orientation of the cartesian axes. 
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Quantitative measures of distortion (= isochoric deformation) of a crystal unit volume can be 
constructed using a normalised deviator tensor Φ [44]: 
 
    Φ = dev EH/K2          (2) 
 
where the invariant K2 is defined using the Frobenius norm ||…||2: 
 
    K2 = ||EH||2.           (3) 
 
In this way, the Hencky strain tensor can be decomposed into K2 ≥ 0 which describes how much 
the shape of the unit volume changes, and Φ, which specifies how the shape change looks like: 
 
    EH = K2 Φ.           (4) 
 
Moreover, the type of distortion can be numerically characterised by the scaled determinant K3 
of the normalised deviator Φ: 
 
    𝐾ଷ = 3√6 det𝚽.          (5) 
 
The invariant K3 is in the range [−1, 1], with the extreme cases K3 = 1 for uniaxial extension 
(=equibiaxial contraction), K3 = −1 for uniaxial contraction (=equibiaxial extension), and K3 = 0 
for pure shear strain, where one principal axis is not stretched at all and the other two principal 
axes are stretched and compressed in a reciprocal way [44]. 
 
For low strains approaching the noise level, the type of distortion inferred from the noisy strain 
tensor elements should also become random and the value of K3 will then randomly vary from 
map point to map point, meaning that we are unsure about the actual type of shape change.  
This effect is qualitatively similar to the way the rotation axis becomes irrelevant for small 
rotation angles near the noise level in EBSD [45, 46]. 
 
In order to compare experimentally the various EBSD strain analysis methods, indents in 
Si wafers can serve as reproducible reference cases [25- 27].  As an example, in Fig. 2 we show 
the result of an indentation experiment on a silicon wafer sample, using different binning levels 
for the strain analysis. 
 
At relatively high deformation magnitudes in the central area near the indent, as seen in the map 
of K2, the corresponding map of K3 indicates uniaxial compression in blue colour (K3 ≈ -1), which 
is consistent with the expectations of FEM simulations [28].  Moreover, at the tips of the cracks 
we see white spots that would indicate a pure shear distortion (K3 ≈ 0). 
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a) Pattern resolution 622×512 pixels, 7×7 simulation super-sampling 
 
 
 
 
 
 
 
 
 
b) Pattern resolution 311×256 pixels, 13×13 simulation super-sampling 
 
 
 
 
 
 
 
 
 
c) Pattern resolution 155×128 pixels, 25×25 simulation super-sampling 
 
 
 
 
 
 
 
 
 
d) Pattern resolution 77×64 pixels, 49×49 simulation super-sampling 
 
Figure 2.  Relative isochoric strain near an indent on a Si(110) sample.  Left column: Logarithm of 

the deviator norm K2, right column: Distortion type K3.  ESBD analysis conditions: 20 kV, 
step size 1µm.  The reference point for the relative strain values is at (0,0). 
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At lower levels of K2 outside the immediate indent area, we see how K3 becomes less well 
defined, as seen by more colour noise in red, white, and blue.  Apparently completely random 
colour noise is seen in the nominally strain-free area near the reference point (0,0) on the upper 
left of the map, where the K2 values also achieve their best minimum values in the range of a few 
10-4 and below.  With increasing distance away from the reference point, there are larger 
systematic red or blue areas in the K3 maps, which we interpret is due to a slight remaining bias 
in the pattern fitting method.  We assume that inherent limitations of the applied pattern matching 
projection centre calibration method [36] are causing systematic small phantom strains at large 
distances from the reference point.  This can also be seen by slightly changing values of K2 in 
the nominally strain-free area of the parts of the maps further away from the reference point.  
Ideally, in the strain-free regions, a completely unbiased strain analysis method should measure 
random strain tensor elements within the noise level of the method and this should lead to 
uniform red-white-blue noise in all of the strain-free regions.  One might thus envision utilising 
the combination of K2 and K3 maps from a wide-area scan of a strain-free silicon sample as 
a comparison tool to verify any large-distance biases within a strain measurement technique. 
 
Concerning the pattern resolution-dependence of the results shown in Fig. 2, we see that binning 
from 622×512 to 311×256 leads to a visually a very similar result, except for the exact 
distributions of K3 in the strain-free areas.  The results begin to clearly deteriorate from 155×128 
to 77×64 pixels resolution, where one can visually detect the appearance of a larger noise floor 
in the K2 signal of the strain-free areas.  Analysing neighbour-pair differences for quantitative 
noise estimation, we found in [28] that the estimated standard deviation of the strain norm noise 
remains below 10-4 for patterns with resolutions down to 155×128 and 13×13 super-sampling. 
 
The analysis of the K2 maps shown in Fig. 2 in combination with the corresponding K3 data 
indicates that for strain norm noise in the order of 0.1 mm/m (10-4), the specific type of distortion 
becomes undetermined already for strain norms of about 1 mm/m (10-3) (i.e., by estimating which 
levels of the K2 map correspond to the boundary between the smooth blue area of the K3 map 
near the indent and the noisy areas further out).  This observation implies that we can know the 
total overall magnitude of a small strain much better than the actual resulting type of shape 
change, which becomes unreliable already at strain norms which are about one magnitude higher 
than the noise limit. 
 
  3.2. Projection centre calibration and strain sensitivity 
 
To investigate in more detail the theoretical strain sensitivity of the super- resolution pattern 
matching method [28], which might be achievable without excess-deficiency features observed 
in the experiment, we examined simulated ideal pattern data from a theoretical polycrystalline 
sample consisting of about 50 different randomly oriented grains.  In this analysis, the strain 
varies horizontally across the map from the left (x = 0.0) to the right (x = 1.0) and is described 
by a strain tensor ε(x) with εmax = 1 mm/m and x = 0…1 as follows: 
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    𝜺ሺ𝑥ሻ = x ∗ ൭െ𝜀௠௔௫ 0 െ𝜀௠௔௫0 െ𝜀௠௔௫ െ𝜀௠௔௫െ𝜀௠௔௫ െ𝜀௠௔௫ 2𝜀௠௔௫൱.      (6) 

 
This strain state is representative for a distortion type near uniaxial extension (K3 ≈ 1.0), 
independently of the strain magnitude.  The resolution of the simulated patterns in the map was 
311×256 and the beam energy was 20 kV.  We assumed that the sample surface plane and the 
detector plane were parallel, because this setting allows us to show the implications of 
an incorrect projection centre calibration for the development of phantom strains and a phantom 
absence of strains.  The synthetic map data was saved in the HDF5-based H5OINA format [47], 
and includes 10 scan lines of strain-free areas at the top and bottom, which are used to calibrate 
the projection centre on known strain-free points.  The synthetic pattern data is analysed using 
the AZTECCRYSTAL MAPSWEEPER software Version 3.3 (Oxford Instruments), using exactly the 
same procedures as with experimentally acquired data.  The H5OINA data file is available at 
DOI 10.5281/zenodo.15050850 for download. 
 
Figure 3 shows the result of the analysis when we correctly use map points in the strain-free area 
itself to calibrate the projection centre.  The recovered strain values correspond to the prescribed 
theoretical values within numerical errors, which should be expected from an analysis that uses 
the same simulated model data for the emulation of the experiment and for its analysis.  We note 
the random colour noise in the two strain free regions of the K3 map, which indicates the absence 
of a significant systematic bias for the analysis of perfect simulated data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Simulated strain data according to Eq. (6), showing a gradient in the distortion magnitude, 

and a constant distortion type near uniaxial extension (K3 ≈ 1.0). ε12 = ε21 = 0.0.  Distortion 
magnitude = K2 (Eq. 3) in mm/m, distortion type = K3 (Eq. 5, dimensionless). 
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Figure 4 shows the result of the analysis when we use map points on the strained area itself for 
the calibration of the projection centre.  The result is a practically complete absence of any 
measured strain in the known strained region.  Instead, a complementary phantom strain is 
measured in the non-strained region.  The cancellation of strain in the strained region and the 
appearance of an opposite strain in the strain-free stripes can be understood from the structure of 
the prescribed strain tensor and how a changing projection centre would be described in the 
framework of Eq. (1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Same analysis as in Fig. 3, but wrongly calibrating on the strained region on the sample.  

This shows a practically complete absence of any measured strain in the strained region and 
a complementary phantom strain in the non-strained region. 

 
 
Because we have the sample plane and the detector screen plane parallel, the ratios of the strain 
tensor elements ε11/ε33 and ε22/ε33 would correspond to changes of the z-coordinate of the 
projection centre (”zooming in or out of the pattern”), while the strain tensor off-diagonal 
elements ε13 and ε23 would be equivalent to a linear translation of the projection centre x, 
y-coordinates [48].  The effects of the strain tensor (6) on a projected pattern can thus be exactly 
mimicked by a moving projection centre during a scan, under the special conditions we were 
setting artificially.  In a real experiment, this behaviour will be modified by the tilt of the surface 
plane, but qualitatively it remains that calibration of a scan on strained regions will lead to 
systematic errors in the strain measurement. 
 
The only strain component that is exempt from the problem of projection centre calibration in 
the present case should be ε12, because we can neglect any shearing of the rigid detector screen 
plane.  That is why the condition of ε12 = 0 in the simulated strain tensor can be used as a test of 
how well the strain analysis approach recovers this condition.  Figure 5 shows that our analysis 
approach results in a mean value near 3×10-6 (i.e., a minimal positive bias) with a standard  
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deviation near 1×10-5 on ideal, simulated data using a calibrated projection centre (fixed in the 
optimisation).  This allows us to confirm that the numerical precision of the approach is well 
below the typically observed noise levels in real experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Distribution of the ε12 component of the analysed simulated strain data, with a true theoretical 

value of 0.0 underlying the pattern simulation. 
 
 
In [24] it has been shown using ideal simulated data how a simultaneous determination of 
projection centre and deformation tensor severely degrades precision.  The observed drop from 
basic machine precision 10-8 under ideal numerical conditions to 10-4 reflects the fact that the 
simultaneous fit of projection centre and deformation (which in general includes both rotation 
and strain) is poorly conditioned, as has been argued by Alkorta et al. [48].  In [49] it was found 
that the extraction of the deformation state based on simulated patterns showed a mean accuracy 
of 1×10-3 in the shear components and about 2×10-3 in the diagonal components (normal strains) 
when optimising while including the projection centre in the fit.  This approach was also applied 
in [49] to experimental data in a hybrid approach that fits the reference point strain state based 
on simulated data and then measures the relative strains with a conventional cross-correlation 
based approach between experimental reference and experimental data patterns.  Correcting the 
relative experimental strains by the simulation-based reference strains, partially more consistent 
strain states were observed in the shear component ϵ12, while the agreement in the other 
components was less good.  These observations are in qualitative agreement with our discussion 
related to ε12 in the present case.  Because of the equivalence of a changing projection centre and 
a developing strain as seen by a projected Kikuchi pattern, our simulation-based analysis above 
emphasises the need for a precise, independent, calibration of the beam position relative to the 
detector with a relative error below the desired strain resolution for absolute strain determination, 
because the resulting errors would appear even if the simulated Kikuchi pattern would match 
practically perfectly to the experiment. 
 
 
 
  



110 

  3.3. Symmetry breaking 
 
The action of strain on a crystalline sample can be interpreted as a local change of the crystal 
unit cell, i.e., a general strain in a cubic crystal will reduce the abstract, mathematical symmetry 
to triclinic.  However, this apparently drastic symmetry-breaking from cubic to triclinic is not 
necessarily reflected by a similarly drastic change in the diffraction pattern.  Instead, the 
observed Kikuchi pattern remains closely similar to the unstrained one, with hardly any 
observable changes for small strains.  In this sense, strain is an example for symmetry breaking 
and the exact discrimination of small strains deviating from a cubic structure is related to similar 
pseudosymmetry problems as the discrimination of two different crystal structures that lead to 
very similar Kikuchi diffraction patterns.  In both cases, it is important to quantify the sensitivity 
of the measured Kikuchi patterns to the expected changes of the unit cell. 
 
As an example for a challenging pseudosymmetry problem in ESBD, we use the example of the 
discrimination of the handedness of quartz, where the expected changes in the Kikuchi pattern 
between the left-handed and the right-handed modification are very small.  This is because the 
crystal lattice parameters of both structures are exactly the same and only the chiral sense of 
arrangement of the unit cell atoms changes [50].  In [50] it was demonstrated that the 
discrimination of quartz chirality is possible from single-crystal samples of known handedness 
by comparison of the experimental patterns to dynamical simulations which are sensitive to the 
breaking of Friedel’s law by non-centrosymmetric structures.  The EBSD mapping of a locally 
changing quartz chirality and the identification of characteristic domain patterns in agate has 
been demonstrated in [51]. 
 
In Fig. 6, we show the effects of a pattern comparison between an experimental quartz pattern 
and the two possible simulations for left-handed and right-handed quartz, respectively.  
The pattern resolution is 156×128, and the pattern was measured at 15 kV beam voltage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Change of the normalised cross-correlation coefficient for simulations corresponding to 

inverted crystal structures of quartz.  The two theoretical patterns show R = 0.974. 
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For the quantitative comparison of the Kikuchi patterns, we apply the normalised 
cross-correlation coefficient (NCCC) R to measure the similarity of two EBSD patterns [52, 53].  
It can be argued that the normalised cross-correlation coefficient is a much more reliable and 
sensitive image similarity metric for comparison of very similar Kikuchi patterns than the 
”Normalised Dot Product” (NDP) metric [18], which also continues to be discussed as 
a similarity measure for EBSD pattern matching.  The main advantage of the NCCC is that it is 
intrinsically insensitive to the actual brightness and contrast of the patterns that are compared, 
while the NDP is not.  Moreover, while both metrics give a value of 1.0 for comparison of 
a pattern with itself, the NCCC also produces consistent reference values near 0.0 for 
comparisons of Kikuchi patterns to random noise, as well as for comparisons of noise to noise, 
with a theoretical mean value of 0.0 in both cases.  The NDP, in contrast, does not give values 
near 0.0 for a comparison of random noise to random noise, but a value near 0.75 (theoretical 
value 3/4) and in general it also gives a significantly different value than 0.75 for pattern-to-noise 
comparison depending on the brightness and contrast of the non-noise pattern [54].  It might be 
considered to be desirable that the similarity metric for an EBSD pattern compared to noise 
should at least not indicate a significantly better or worse fit than a comparison of noise to noise.  
The underlying reason for this undesirable bias of the NDP is that the images are normalised to 
the range 0.0 - 1.0 when calculating the NDP, and thus low-intensity pixels are considered less 
important by the NDP whereas high-intensity pixels are preferentially emphasised.  Additionally, 
in the presence of noise, even the location of the minimum values “0.0” and maximum values 
“1.0” in a pattern will change and influence the NDP.  Conversely, the NCCC accurately 
accounts for the fact that, within a Kikuchi diffraction pattern, both high-intensity and 
low-intensity pixels hold equally significant information.  The pixels which form black lines are 
just as crucial as those that form the white lines in a Kikuchi pattern, meaning we should focus 
on local deviations from the mean intensity within a Kikuchi pattern, not on the absolute intensity 
itself.  This is evident from the NCCC’s computation, which is based on patterns normalised to 
have a zero mean and a standard deviation of one [54].  The characteristics of the NCCC are 
particularly advantageous when the difference between two potential solutions are minimal and 
it is essential to avoid any bias introduced by the metric used for pattern comparison. 
 
Concerning the comparison shown in Fig. 6, we find that the NCCC is R = 0.7116 for the best 
fit pattern compared to R = 0.7018 for the alternative.  In the present case, this means that the 
winning solution is the one for the inverted “left-handed” structure relative to the “right-handed” 
one that was used for the simulation.  The observed change of ∆R = 0.01 between the two 
possibilities may appear small but is statistically significant, as discussed in [55].  As a general 
rule for typical Kikuchi patterns measured in EBSD, changes of ∆R = 0.01 at mean values of 
R > 0.5 can be assigned to true differences in the simulations, and the probability that such 
changes can be caused, for example, by noise in the experimental pattern, can be neglected.  
The difference ∆R between the two simulated patterns is R = 0.974, i.e., a drop of only ∆ = 0.026 
would be observed even if we would measure ideal theoretical patterns, with the correct pattern 
simulation fitting perfectly with R = 1.0.  Scaled to real experimental applications, we estimate 
that theoretical correlation coefficients near 0.98 and below are useful indicators for  
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experimentally possible discrimination of two related pseudosymmetric variants, provided that 
the quality of the experimental pattern is good enough to lead to large enough correlation 
coefficients between experiment and theory [55].  As an example of a complex pseudosymmetry 
problem that can be solved using the pattern matching approach we refer the reader to [17], 
where the distribution of six pseudosymmetric variants in Cu6Sn5 has been demonstrated. 
 
 
  4.  SUMMARY AND OUTLOOK 
 
We have discussed advancements in electron backscatter diffraction emphasising improvements 
in pattern data analysis by using a super-sampling approach based on high-resolution simulations 
in combination with Kikuchi patterns of varying experimental resolutions. 
 
A significant challenge for future improvements of the EBSD pattern matching pipeline remains 
the efficient treatment of the excess-deficiency effect.  This issue currently limits the achievable 
accuracy of simulation-based strain determination and projection centre calibration [43]. 
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