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1. INTRODUCTION TO STEM AND ELECTRON TOMOGRAPHY

The modern transmission electron microscope (TEM) is a powerful tool for the characterisation
of materials at the nano- and atomic scales. One of the operating modes available on most
instruments is scanning (S)TEM wherein a very fine probe is scanned over a region of interest
in the sample and one or more signals is collected at each point in the digitised raster.
STEM mode offers several advantages over the more commonly employed conventional
(C)TEM mode. Not least of these is the ability to collect spectroscopic signals simultaneously
with multiple imaging signals which makes STEM the operating mode of choice for analytical
experiments.

Advances in optics over the past few decades have pushed the spatial resolution of STEM well
below 0.1 nm and made atomic-resolution imaging and analysis nearly routine. However,
all STEM signals are projected through the thickness of the specimen at each scan point and,
therefore, do not readily provide information about the three-dimensional (3D) structural and
chemical distributions within. Electron tomography (ET) is a process whereby these 3D aspects
of the specimen object are reconstructed from a series of two-dimensional (2D) projections in
the TEM or STEM [1]. ET has proven to be a valuable technique in both biological [2-7] and
materials sciences [8-13]. Recent advances have even pushed the spatial resolution to the
atomic-scale [14-23] and have integrated spectroscopic methods such as energy-dispersive X-ray
(EDS) and electron energy-loss (EELS) spectroscopies with the more traditional bright-field or
annular dark-field imaging techniques [24-37]. Further improvements in reconstruction
resolution and quality have been demonstrated using a multi-modal approach combining imaging
and spectral imaging during the tomographic acquisition [38].

Though the technique is quite flexible and has many modalities, the basic concept remains the
same throughout. In ET, we seek to recover an image of an object, fi(y,z), from a series of
projections collected over a range of angles, P(@,y). This can be accomplished in several ways,
but often begins with the inverse Radon transform (RT~1) such that:

fn.2) = RT71(P,(6,y)) (1)
0 € 6,,0,05...,0, )
0<n<n, 3)

where: @,: tilt angle for each projection image, k: number of projection images, n,: number pixels
in the horizontal image axis, x, and y: vertical image axis.

In the convention we will use for this discussion and for the software package we use for data

processing, the tilt axis of the dataset is assumed to be parallel to the horizontal x-axis of the
images (see Fig. 1). Note that in the above equation, the reconstructed image is given as f rather
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than the true object, f. This is a result of the finite tilt increment between projections, artefacts
arising from data processing errors, the noise content of the projection data, and, in many cases,
a hardware/specimen limit on the portion of the full tilt range (0 to z radians) that is accessible.
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Figure 1. Schematic illustration of the axes configuration for an electron tomography experiment.

The object is rotated about the tilt axis which is parallel to the horizontal x-axis of the image.

2. ET WORKFLOW

In practice, the workflow begins with the collection of projection images over a range of
specimen tilt orientations. At each step, the stage goniometer is advanced by a given tilt
increment, one or more new images are collected, and the data is stored for offline processing.
If necessary, the stage and/or beam shift can be adjusted after tilting in order to account for
mechanical movement of the specimen during tilting and the image can also be refocused.
The entire process of tilting, adjusting shifts, focussing, and collecting data can be fully
automated, semi-automated, or fully manual. The degree of user interaction that is necessary is
typically set by the spatial resolution requirements of the analysis with higher resolution calling
for more intervention.

Next, several pre-processing steps can be performed on an as-needed basis. The full dataset may
need to be truncated with some images being discarded due to image quality issues or because
the specimen had shifted during acquisition. Often, the dataset will be down sampled in the
spatial domain both to decrease computational requirements in the subsequent steps or to reduce
noise. Image filters may also be applied during pre-processing in order to remove noise or image
artifacts (e.g., cosmic rays, camera defects, etc.). Prior to reconstruction, the projections must
be spatially aligned to a common coordinate system and tilt axis. The former involves the
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calculation and application of a transformation matrix for each projection in the series, while the
latter is accomplished via a global rotation and/or shift of the entire image stack. Failure to either
properly register the individual projections to each other or to align the stack to the tilt axis will
result in artifacts of varying severity and appearance in the reconstructed volume.

Once pre-processing is complete, the stack is provided as input to a reconstruction algorithm.
The goal of the reconstruction process is to convert the input slices along x, also known as the
sinograms, (P,(0,y)) from the tilt series to two-dimensional images of the original object
fn(¥,2). These algorithms fit into two broad classes: analytical methods and iterative methods.
The most commonly used analytical method is filtered-backprojection (FBP) which applies
a weighting filter to the projections prior to calculating the inverse Radon transform of the
projection data. The filter is designed to counteract the blurring effect, which results from the
finite tilt increment used in acquiring the tilt series data and the nonuniform sampling of the
frequency domain this produces. Iterative methods seek to improve upon an initial
reconstruction by re-projecting it and comparing to the actual projection data. The two most
widely used iterative methods are the simultaneous iterative reconstruction technique (SIRT)
[39] and the simultaneous algebraic reconstruction technique (SART) [40]. In both cases,
the goal is to minimise the difference between the measured projection data and the reprojection
of the current reconstruction. In SIRT, the update step is carried out on the full reconstructed
image by forward projecting it and comparing to the full input projection data. By contrast,
in SART the update step is performed sequentially by forward projecting the current
reconstruction estimate for each projection angle and comparing to the input projection data for
just that angle. Many other reconstruction methods have been developed more recently for
specific applications. These include (among others): (i) the discrete algebraic reconstruction
technique (DART) [41] where the intensity levels in the reconstructed image are iteratively
assigned to one of several distinct grayscale values provided by the analyst, (i) total-variation
minimisation (TVMin) [42] which is an iterative method that includes a regularisation step to
promote smoothness within distinct regions of the image, and (ii7) compressed sensing electron
tomography (CSET) [43], which produces high-fidelity reconstructions while remaining robust
to undersampling conditions in both the spatial and tilt-axis domains.

Finally, the reconstructed volume must be analysed in some fashion depending on the nature of
the features or properties being measured. In some cases, simply visualising the 3D volume is
sufficient to reveal the necessary detail and isosurface generation or volumetric rendering can
meet these needs. More often, some features such as interfacial area or the volume fraction of
a given phase needs to be measured. To do this, the reconstructed data is typically segmented
so each voxel of the tomogram is assigned a discrete label, allowing for the quantification of
various features.
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3. SOFTWARE FOR DATA PROCESSING

Many software packages, both commercial and open-source, are available for handling some or
all of these steps; from data acquisition to preprocessing and on to alignment and eventually
reconstruction. It is beyond the scope of this paper to discuss all of these, but, limiting our focus
to just the non-commercial open source options, the most widely used package for data
acquisition is SERIALEM [44, 45] which can be paired with the IMOD package [46, 47] for
preprocessing, alignment, and reconstruction. Another widely used open-source tool for
tomography data processing and visualisation is TOMVIZ [48, 49], which offers a fully developed
UI with intuitive workflow options for all stages of the tomography pipeline. Another
well-developed open-source option is TOMOPY [50] which originated for X-ray based
tomography work but is readily adapted to ET as well. Finally, a number of plugins for IMAGEJ
(too many to list here) are available, each of which handles some portion of the tomography
workflow.

In this paper, we describe the ETSPY package [51] which is an ET-focused extension of
HYPERSPY [52, 53], a popular open-source, Python-based package for the processing of
multidimensional data, including electron microscopy and spectroscopy data. ETSpPY offers
a compact, command line driven interface for pre-processing, alignment, reconstruction,
and basic 2D visualisation of ET data. Additionally, when used through the Jupyter Notebook
or Jupyter Lab interfaces54, ETSPY promotes scientific reproducibility through automatic
documentation of all processing steps used to achieve a result. These Jupyter documents can
also be easily annotated and shared with collaborators or included alongside any resulting
publication. As a HYPERSPY extension, ETSPY offers a number of attractive options in terms of
the ET workflow. Since the parent package already offers high quality widgets for plotting and
visualisation of higher dimensional datasets and has embedded a large number of relevant data
processing methods, ETSPY can draw on these existing capabilities and the efforts of the large
network of active HYPERSPY users and developers. In this way, ETSPY joins the growing number
of HYPERSPY extensions available to analysts all over the world, which as of this publication
includes tools for X-ray energy-dispersive and electron energy loss spectroscopies (EXSPY [53]),
diffraction and 4D-STEM (PYXEM [55]), EBSD (KIKUCHIPY [56]), cathodoluminescence
(LUMISPY [57]), atomic resolution imaging (ATOMAP [58]), holography (HOLOSPY [59)),
and particle analysis (PARTICLESPY [60]).

Finally, it is very straightforward to run Jupyter on a headless server which enables users to
leverage remote high-performance computing resources which have large amounts of memory
for handling larger datasets as well as GPUs and high CPU core counts for accelerated
tomographic reconstruction. By accessing the Jupyter interface through a web browser on a local
laptop or desktop, data processing and visualisation can be carried out in a convenient, interactive
fashion without being constrained by the limits of the hardware of the local machine.
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4. ETSpy OVERVIEW

ETSPY creates two new Python classes both of which are derived from the HYPERSPY Signal2D
parent class and inherit all the latter’s functionality. The first of these new classes is the
TomoStack, which contains the tilt series data, metadata, and all the methods used for data
manipulation, alignment, and reconstruction. As in the Signal2D parent class, the TomoStack
has navigation axes and signal axes. For an ET image tilt series, the signal axes will be the x and
y image axes, while the navigation axis will be the 4 tilt angle dimension. The data can be
visualised readily using the HYPERSPY plot functionality and, when using the Jupyter widget
backend for MATPLOTLIB61, the stack can be interactively viewed in the Jupyter interface as
a function of tilt angle. In addition to the TomoStack, there is a second class called a RecStack,
which is used to handle the reconstructed data.

ETSPY contains a load function for reading data into memory. HYPERSPY [62] and the associated
ROSETTASCIIO package [63] already offer robust data reading capabilities for a wide array of
ET relevant file formats. ETSPY relies on this functionality to access image data and the required
metadata for several formats such as Gatan Digital Micrograph (DM3 or DM4), HDFS,
and MRC. When loaded, HYPERSPY reader functions handle the calibration data and ETSpyY
collects the projection angle data for inclusion in the resulting TomoStack. Alternatively,
if a tilt series already resides in memory as a NumPy array or a HYPERSPY SIGNAL2D it can be
directly converted to a TomoStack.

Any TomoStack or RecStack can be saved at any point during data processing and analysis.
This is done by using the save method and is best accomplished using the HYPERSPY hspy
format, which is a custom version of the HDF5 standard format. When using the hspy format,
the data and all of the metadata is stored and easily accessed in the future using the
etspy.load() method.

Both the TomoStack and RecStack classes inherit the plotting functionality of the HYPERSPY
Signal2D class. When used interactively with ipywidgets a slice navigator can be used to
navigate through the stack in the tilt dimension and update the display in real time. By employing
the swap_axes () method, navigation can also be done over the x-axis which will show the
sinogram view.

5. CONVENTIONAL STEM TOMOGRAPHY

To demonstrate the functionality of ETSPY for conventional image based tomography data
processing, a dataset collected from a sample of NIST SRM-2135c [64] will be used. This SRM
consists of a silicon substrate with alternating layers of nickel and chromium deposited on the
free surface. A pillar-shaped sample was fabricated from this SRM using focussed ion beam
milling. The tomographic tilt series consists of 91 STEM high-angle annular dark field
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(HAADF) images collected over a 180° tilt range with a constant tilt increment of 2°.
The primary beam energy was 300 keV and the probe current was approximately 50 pA.
Each image was 1,024 pixels square and was collected using a per pixel dwell time of 32 ps and
a pixel size of 1 nm. The full stack was collected in an automated manner using SerialEM.

The first task confronted by a microanalyst who wants to reconstruct electron tomography data
is image registration. ETSPY provides multiple options for calculating and applying translational
shifts for aligning a TomoStack, all which are accessed using the register_stack() method.
The available options are based on phase correlation (PC) [65], the StackReg [66] method,
centre of mass tracking (COM) [67], and an approach that combines centre of mass tracking with
the so-called common-line method (COM-CL) [14]. All of these methods have advantages and
disadvantages. PC is straightforward and fast, although it can be challenged by noisy data,
by samples which exhibit regularly repeating features, or when the differences in image features
between two images is large (e.g., when a large tilt increment is used). StackReg will often
outperform PC in these cases but is computationally more expensive. Finally, both COM and
COM-CL incorporate the geometry of the tilt series acquisition and are very effective for
particulate or pillar shaped samples since little or no additional material enters the field of view
during tilting in these cases. However, they will often fail when slab type specimen geometries
are used or when significant amounts of extraneous material enters and leaves the field of view
over the course of the series. Further detail about all these methods can be found in the provided
citations.

Regardless of the method chosen, translation shifts are calculated between each set of images in
the stack. The shifts are then composed such that they are made relative to the previous shift in
the stack starting from a user defined projection number. The results of this process for the
SRM-2135c pillar sample is shown in Fig. 2.

Finally, the shifts can be calculated using any of these methods and then applied to another stack
using the align_other() method. This approach is useful when multiple image signals are
collected during a single tilt series acquisition and when one of the signals has superior
characteristics for calculating the alignment shifts compared to another. For example, shifts can
be calculated on a high signal-to-noise ratio medium-angle annular dark field (MAADF) image
stack and applied to a noisier high-angle annular dark field (HAADF) stack. Since both signals
are acquired simultaneously, the shifts for each will be the same. This will also be very useful
when we turn to hyperspectral tomography data, since the shifts can be calculated using an image
signal then used to register the spectral images extracted from the simultaneously acquired
hyperspectral dataset.

Once the stack has been translationally registered, it is then important to ensure that the tilt axis
of the dataset is centred and made as close to horizontal as possible prior to reconstruction.
Failure to do so will result in severe artefacts in the reconstructed sinograms and make
interpretation and quantification of the data difficult or impossible. To perform the tilt axis
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Figure 2.  Central projections extracted from the NIST SRM-2135c tilt series. The y-axis projections
(sinograms) and the x-axis projections were extracted from the tilt series data along the
positions denoted by the cyan and yellow dashed lines. Projections are shown as acquired
and after image registration and fine alignment.

alignment, two options are available: A method which uses centre of mass tracking [68] and
another using the intensity present in the maximum projection image of the dataset. The latter
is particularly effective when particles are present in the sample which trace linear paths in the
projected maximum image. In both cases, the goal is to calculate a global shift and rotation of
the stack which places the tilt axis along the horizontal axis of the stack. The effects of the stack
registration and tilt axis alignment process on the reconstruction quality for the pillar-shaped
SRM-2135c sample are shown in Fig. 3. Prior to tilt axis correction, both the as acquired data
and the spatially registered data suffer from severe degradation in the form of the C-shaped
artifact surrounding the sample region in each. Only after tilt axis alignment is the expected
circular shape of the conical cross-section recovered.

Once the alignment process is complete, ETSPY offers five algorithms to perform the
reconstruction. These are simple back projection (BP), filtered back projection (FBP, default),
SIRT, SART, and discrete algebraic reconstruction technique (DART). Each of these algorithms
relies upon the implementations provided in the ASTRA toolbox [69] to perform the
reconstruction.

Reconstruction is initiated by calling the reconstruct() method of the TomoStack.
The ASTRA toolbox offers CPU-based and GPU-accelerated options for the BP, FBP, SIRT,
and SART methods. ETSpy will attempt to determine whether a CUDA-compatible GPU is
available and use it for faster reconstruction when possible. Alternatively, the reconstruction
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Figure 3.  Reconstructed slices from the NIST SRM-2135c tilt series at various points in the alignment
workflow. Reconstructions using the as acquired data, the spatially registered data, and the
fully aligned data are shown.

will be carried out using parallel computation on the CPU using the Python multiprocessing
package. The reconstruction returns a RecStack object, which contains the 3D reconstructed
image data. Results generated from the NIST SRM-2135c sample are shown in Fig. 4.

X-Y Slice Z-Y Slice X-Z Slice

X (nm) z (nm) X (nm)

Figure 4.  Reconstruction of STEM-HAADF tomography data of NIST SRM-2135c. Depicted are the
central slices extracted from the reconstruction in the ‘X-Y’, ‘Z-Y’, and ‘X-Z’ orientations.

6. HYPERSPECTRAL STEM TOMOGRAPHY

To demonstrate the use of ETSPY for processing hyperspectral tomography, data was collected
from another needle-shaped sample of the NIST SRM-2135c¢ depth-profiling standard.
EDS spectrum images (SIs) were collected over a 180° tilt range using a tilt increment of 5°.
The data were collected using an EDAX Octane-T silicon drift detector and the acquisition was
controlled by the EDAX TEAM software. The SIs were 162 x 128 pixels in size with
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3 nm square pixels. The probe current was approximately 0.5 nA and the per pixel dwell time
was 200 ms. At each new tilt, the sample was manually aligned to an image at the previous tilt
using a combination of beam and stage shifting. The sum spectrum for the entire spectral
tomography dataset is shown along with the sum image calculated from a single projection angle
in Fig. 5.
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Figure 5.  Sum spectrum of the full spectral tomography dataset of the SRM 2135¢ sample and sum
image extracted from a single spectrum image projection.

To analyse this dataset using ETSPY, the TEAM SPD files were converted to HDFS5 format using
HyperSpy. The resulting dataset consists of 37 HYPERSPY Signal2D instances each of which
is 4,000 channels deep and 162 x 128 pixels in size. HYPERSPY was used to extract the required
2D elemental maps at each tilt and converting each of the resulting HYPERSPY Signal2D
instances to a TomoStack with a shape of (37 | 162 x 128). Using HYPERSPY, this can be done
either via straightforward background subtraction methods, curve fitting, or via machine learning
algorithms. In the present case, we have employed NMF decomposition and the resulting
component images for one projection of the full hyperspectral tomography dataset are shown in
Fig. 6. In this case, the first four components show the spatial distribution of the nickel, silicon,
chromium, and platinum signals, respectively. Components five and six (not shown),
were related to the absorption of the nickel and chromium L-lines.
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Component #1 Component #2 Component #3

Component #4 Color Overlay

Figure 6.  Results of NMF decomposition of spectral tomography dataset. Components 1 through 4
are shown along with a colour overlay emphasizing their spatial extent.

Once the TomoStack’s have been created, it is then just a matter of following the usual
tomographic workflow of stack registration, tilt-axis alignment and reconstruction. Since the
elemental maps are often not well suited for calculating alignment transformations, we can either
use a tilt series of an image signal collected simultaneously (e.g., HAADF, etc.) or by the spectral
sum images for alignment followed by using the align_other () method of the TomoStack
to apply the calculated alignment to each spectral tilt series. For the present case we have used
the spectral sum images to calculate the alignment. Finally, the individual NMF image series
are reconstructed independently and slices from each are displayed in Fig. 7 (example code for
the full process is included in the Appendix).
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Figure 7.  Slices extracted from reconstructions of the NMF components associated with nickel,
chromium, and silicon.

At this point, the reconstructions can be quantified using packages such as NUMPY, SciPy,
SCIKIT-IMAGE, etc., all of which can be accessed directly from the same Jupyter Notebook used
for ETSPY processing. For example, it is very straightforward to binarize the reconstructions of
the nickel and chromium layers and calculate volumetric ratios of each:

pixel_size =Ni_rec.axes_manager[0].scale

Ni_binary =Ni_rec.deepcopy()
Ni_binary[Ni_binary>0] = 1

Cr_binary =Cr_rec.deepcopy()

Cr_binary[Cr_binary>0] = 1

Ni_volume = pixel_size**3 * Ni_binary.sum()
Cr_volume = pixel_sizex*3 * Cr_binary.sum()
volume_ratio = Ni_volume/Cr_volume
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This is just one simple example to illustrate the way in which tomographic reconstructions
generated using ETSPY can be directly interrogated within the Jupyter environment.
Finally, 3D visualisation can be carried out in one of two ways. First, the reconstructions can be
saved to disk and then read into dedicated visualisation software. Alternatively, for those who
wish to remain in the Python environment used for the rest of the data processing, packages such
as IPYVOLUME [70] can be used for some basic visualisation. An example of using IPYVOLUME
is shown in Fig. 8.

Figure 8.  Volumetric rendering using IPYVOLUME of the Cr-Ka, Ni-Ko, and Si-Ko tomographic
reconstructions (red, green, and blue, respectively).
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8. APPENDIX

### Code block showing workflow for conventional tomographic
### reconstruction

# Import ETSpy
import etspy.api as et

# Define path to tilt series file
datapath = '/path/to/tilt/series/filename.mrc'

# Load data
haadf = et.load(datapath)

# Rebin spatially by a factor of 2
haadf = haadf.rebin(scale=[1,2,2])

# Register the images in the stack using pystackreg
reg = haadf.stack_register("StackReg")

# Determine the tilt axis rotation and rotate stack so that
# tilt axis is horizontal
ali = reg.tilt_align("CoM", slices=[160,256,380])

# Manually inspect reconstruction quailty and shift tilt axis
# along the y axis (i.e., perpendicular to the tilt axis)

_ = ali.test_align(method='FBP', iterations=100)

ali = ali.trans_stack(yshift=6)

# Reconstruct data
rec = ali.reconstruct('FBP')

### Code block showing workflow for conventional tomographic
### reconstruction

# Import ETSpy
import etspy.api as et

# Define path to tilt series file
datapath = '/path/to/tilt/series/filename.mrc'

# Load data
haadf = et.load(datapath)

# Rebin spatially by a factor of 2
haadf = haadf.rebin(scale=[1,2,2])

# Register the images in the stack using pystackreg
reg = haadf.stack_register("StackReg")

# Determine the tilt axis rotation and rotate stack so that
# tilt axis is horizontal
ali = reg.tilt_align("CoM", slices=[160,256,380])

# Manually inspect reconstruction quailty and shift tilt axis
# along the y axis (i.e., perpendicular to the tilt axis)

_ = ali.test_align(method='FBP', iterations=100)

ali = ali.trans_stack(yshift=6)

# Reconstruct data
rec = ali.reconstruct('FBP')
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### Code block showing workflow hyperspectral tomographic
### reconstruction using ETSpy

## Calculate alignment on the spectral sum image series

# Calculate sum image. This results in a HyperSpy
# Signal2D class:
edx_sum = edx.sum(3).as_signal2D((0,1))

# Convert to a Signal2D to TomoStack
edx_sum = etspy.TomoStack(si_sum, tilts)
edx_reg = edx_sum.stack_register("StackReg")
edx_ali = edx_reg.tilt_align("CoM")

# Apply alignments to the phase maps

Ni_NMF = edx_ali.align_other(Ni_NMF)
Si_NMF = edx_ali.align_other(Si_NMF)
Cr_NMF = edx_ali.align_other(Cr_NMF)
Pt_NMF = edx_ali.align_other(Pt_NMF)

# Reconstruct the datasets

Ni_rec = Ni_NMF.reconstruct()
Si_rec = Si_NMF.reconstruct()
Cr_rec = Cr_NMF.reconstruct()
Pt_rec = Pt_NMF.reconstruct()

82



