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  1.  INTRODUCTION TO STEM AND ELECTRON TOMOGRAPHY 
 
The modern transmission electron microscope (TEM) is a powerful tool for the characterisation 
of materials at the nano- and atomic scales.  One of the operating modes available on most 
instruments is scanning (S)TEM wherein a very fine probe is scanned over a region of interest 
in the sample and one or more signals is collected at each point in the digitised raster.  
STEM mode offers several advantages over the more commonly employed conventional 
(C)TEM mode.  Not least of these is the ability to collect spectroscopic signals simultaneously 
with multiple imaging signals which makes STEM the operating mode of choice for analytical 
experiments. 
 
Advances in optics over the past few decades have pushed the spatial resolution of STEM well 
below 0.1 nm and made atomic-resolution imaging and analysis nearly routine.  However, 
all STEM signals are projected through the thickness of the specimen at each scan point and, 
therefore, do not readily provide information about the three-dimensional (3D) structural and 
chemical distributions within.  Electron tomography (ET) is a process whereby these 3D aspects 
of the specimen object are reconstructed from a series of two-dimensional (2D) projections in 
the TEM or STEM [1].  ET has proven to be a valuable technique in both biological [2-7] and 
materials sciences [8-13].  Recent advances have even pushed the spatial resolution to the 
atomic-scale [14-23] and have integrated spectroscopic methods such as energy-dispersive X-ray 
(EDS) and electron energy-loss (EELS) spectroscopies with the more traditional bright-field or 
annular dark-field imaging techniques [24-37].  Further improvements in reconstruction 
resolution and quality have been demonstrated using a multi-modal approach combining imaging 
and spectral imaging during the tomographic acquisition [38]. 
 
Though the technique is quite flexible and has many modalities, the basic concept remains the 
same throughout.  In ET, we seek to recover an image of an object, fx(y,z), from a series of 
projections collected over a range of angles, Px(θ,y).  This can be accomplished in several ways, 
but often begins with the inverse Radon transform (𝑹𝑻ି𝟏) such that: 
 
    𝒇෠𝒏ሺ𝒚, 𝒛ሻ = 𝑹𝑻ି𝟏(𝑷𝒏(𝜽,𝒚))        (1) 
 
    𝜽 ∈  𝜽𝟏,𝜽𝟐,𝜽𝟑, … . ,𝜽𝒌         (2) 
 
    𝟎 ≤ 𝒏 ≤ 𝒏𝒙          (3) 
 
where: θn: tilt angle for each projection image, k: number of projection images, nx: number pixels 
in the horizontal image axis, x, and y: vertical image axis. 
 
In the convention we will use for this discussion and for the software package we use for data 
processing, the tilt axis of the dataset is assumed to be parallel to the horizontal x-axis of the 
images (see Fig. 1). Note that in the above equation, the reconstructed image is given as 𝒇෠  rather  
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than the true object, 𝒇.  This is a result of the finite tilt increment between projections, artefacts 
arising from data processing errors, the noise content of the projection data, and, in many cases, 
a hardware/specimen limit on the portion of the full tilt range (0 to π radians) that is accessible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic illustration of the axes configuration for an electron tomography experiment.  

The object is rotated about the tilt axis which is parallel to the horizontal x-axis of the image. 
 
 
  2.  ET WORKFLOW 
 
In practice, the workflow begins with the collection of projection images over a range of 
specimen tilt orientations.  At each step, the stage goniometer is advanced by a given tilt 
increment, one or more new images are collected, and the data is stored for offline processing.  
If necessary, the stage and/or beam shift can be adjusted after tilting in order to account for 
mechanical movement of the specimen during tilting and the image can also be refocused.  
The entire process of tilting, adjusting shifts, focussing, and collecting data can be fully 
automated, semi-automated, or fully manual.  The degree of user interaction that is necessary is 
typically set by the spatial resolution requirements of the analysis with higher resolution calling 
for more intervention. 
 
Next, several pre-processing steps can be performed on an as-needed basis.  The full dataset may 
need to be truncated with some images being discarded due to image quality issues or because 
the specimen had shifted during acquisition.  Often, the dataset will be down sampled in the 
spatial domain both to decrease computational requirements in the subsequent steps or to reduce 
noise.  Image filters may also be applied during pre-processing in order to remove noise or image 
artifacts (e.g., cosmic rays, camera defects, etc.).  Prior to reconstruction, the projections must 
be spatially aligned to a common coordinate system and tilt axis.  The former involves the  
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calculation and application of a transformation matrix for each projection in the series, while the 
latter is accomplished via a global rotation and/or shift of the entire image stack.  Failure to either 
properly register the individual projections to each other or to align the stack to the tilt axis will 
result in artifacts of varying severity and appearance in the reconstructed volume. 
 
Once pre-processing is complete, the stack is provided as input to a reconstruction algorithm. 
The goal of the reconstruction process is to convert the input slices along x, also known as the 
sinograms, (𝑷𝒙(𝜽,𝒚)) from the tilt series to two-dimensional images of the original object 𝒇෠𝒏(𝒚, 𝒛).  These algorithms fit into two broad classes: analytical methods and iterative methods.  
The most commonly used analytical method is filtered-backprojection (FBP) which applies 
a weighting filter to the projections prior to calculating the inverse Radon transform of the 
projection data.  The filter is designed to counteract the blurring effect, which results from the 
finite tilt increment used in acquiring the tilt series data and the nonuniform sampling of the 
frequency domain this produces.  Iterative methods seek to improve upon an initial 
reconstruction by re-projecting it and comparing to the actual projection data.  The two most 
widely used iterative methods are the simultaneous iterative reconstruction technique (SIRT) 
[39] and the simultaneous algebraic reconstruction technique (SART) [40].  In both cases, 
the goal is to minimise the difference between the measured projection data and the reprojection 
of the current reconstruction.  In SIRT, the update step is carried out on the full reconstructed 
image by forward projecting it and comparing to the full input projection data.  By contrast, 
in SART the update step is performed sequentially by forward projecting the current 
reconstruction estimate for each projection angle and comparing to the input projection data for 
just that angle.  Many other reconstruction methods have been developed more recently for 
specific applications. These include (among others): (i) the discrete algebraic reconstruction 
technique (DART) [41] where the intensity levels in the reconstructed image are iteratively 
assigned to one of several distinct grayscale values provided by the analyst, (ii) total-variation 
minimisation (TVMin) [42] which is an iterative method that includes a regularisation step to 
promote smoothness within distinct regions of the image, and (iii) compressed sensing electron 
tomography (CSET) [43], which produces high-fidelity reconstructions while remaining robust 
to undersampling conditions in both the spatial and tilt-axis domains. 
 
Finally, the reconstructed volume must be analysed in some fashion depending on the nature of 
the features or properties being measured.  In some cases, simply visualising the 3D volume is 
sufficient to reveal the necessary detail and isosurface generation or volumetric rendering can 
meet these needs.  More often, some features such as interfacial area or the volume fraction of 
a given phase needs to be measured.  To do this, the reconstructed data is typically segmented 
so each voxel of the tomogram is assigned a discrete label, allowing for the quantification of 
various features. 
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  3.  SOFTWARE FOR DATA PROCESSING 
 
Many software packages, both commercial and open-source, are available for handling some or 
all of these steps; from data acquisition to preprocessing and on to alignment and eventually 
reconstruction.  It is beyond the scope of this paper to discuss all of these, but, limiting our focus 
to just the non-commercial open source options, the most widely used package for data 
acquisition is SERIALEM [44, 45] which can be paired with the IMOD package [46, 47] for 
preprocessing, alignment, and reconstruction.  Another widely used open-source tool for 
tomography data processing and visualisation is TOMVIZ [48, 49], which offers a fully developed 
UI with intuitive workflow options for all stages of the tomography pipeline.  Another 
well-developed open-source option is TOMOPY [50] which originated for X-ray based 
tomography work but is readily adapted to ET as well.  Finally, a number of plugins for IMAGEJ 
(too many to list here) are available, each of which handles some portion of the tomography 
workflow. 
 
In this paper, we describe the ETSPY package [51] which is an ET-focused extension of 
HYPERSPY [52, 53], a popular open-source, Python-based package for the processing of 
multidimensional data, including electron microscopy and spectroscopy data.  ETSPY offers 
a compact, command line driven interface for pre-processing, alignment, reconstruction, 
and basic 2D visualisation of ET data.  Additionally, when used through the Jupyter Notebook 
or Jupyter Lab interfaces54, ETSPY promotes scientific reproducibility through automatic 
documentation of all processing steps used to achieve a result.  These Jupyter documents can 
also be easily annotated and shared with collaborators or included alongside any resulting 
publication.  As a HYPERSPY extension, ETSPY offers a number of attractive options in terms of 
the ET workflow.  Since the parent package already offers high quality widgets for plotting and 
visualisation of higher dimensional datasets and has embedded a large number of relevant data 
processing methods, ETSPY can draw on these existing capabilities and the efforts of the large 
network of active HYPERSPY users and developers.  In this way, ETSPY joins the growing number 
of HYPERSPY extensions available to analysts all over the world, which as of this publication 
includes tools for X-ray energy-dispersive and electron energy loss spectroscopies (EXSPY [53]), 
diffraction and 4D-STEM (PYXEM [55]), EBSD (KIKUCHIPY [56]), cathodoluminescence 
(LUMISPY [57]), atomic resolution imaging (ATOMAP [58]), holography (HOLOSPY [59]), 
and particle analysis (PARTICLESPY [60]). 
 
Finally, it is very straightforward to run Jupyter on a headless server which enables users to 
leverage remote high-performance computing resources which have large amounts of memory 
for handling larger datasets as well as GPUs and high CPU core counts for accelerated 
tomographic reconstruction.  By accessing the Jupyter interface through a web browser on a local 
laptop or desktop, data processing and visualisation can be carried out in a convenient, interactive 
fashion without being constrained by the limits of the hardware of the local machine. 
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  4.  ETSPY OVERVIEW 
 
ETSPY creates two new Python classes both of which are derived from the HYPERSPY Signal2D 
parent class and inherit all the latter’s functionality.  The first of these new classes is the 
TomoStack, which contains the tilt series data, metadata, and all the methods used for data 
manipulation, alignment, and reconstruction.  As in the Signal2D parent class, the TomoStack 
has navigation axes and signal axes.  For an ET image tilt series, the signal axes will be the x and 
y image axes, while the navigation axis will be the θ tilt angle dimension.  The data can be 
visualised readily using the HYPERSPY plot functionality and, when using the Jupyter widget 
backend for MATPLOTLIB61, the stack can be interactively viewed in the Jupyter interface as 
a function of tilt angle.  In addition to the TomoStack, there is a second class called a RecStack, 
which is used to handle the reconstructed data. 
 
ETSPY contains a load function for reading data into memory.  HYPERSPY [62] and the associated 
ROSETTASCIIO package [63] already offer robust data reading capabilities for a wide array of 
ET relevant file formats.  ETSPY relies on this functionality to access image data and the required 
metadata for several formats such as Gatan Digital Micrograph (DM3 or DM4), HDF5, 
and MRC.  When loaded, HYPERSPY reader functions handle the calibration data and ETSPY 
collects the projection angle data for inclusion in the resulting TomoStack.  Alternatively, 
if a tilt series already resides in memory as a NumPy array or a HYPERSPY SIGNAL2D it can be 
directly converted to a TomoStack. 
 
Any TomoStack or RecStack can be saved at any point during data processing and analysis.  
This is done by using the save method and is best accomplished using the HYPERSPY hspy 
format, which is a custom version of the HDF5 standard format.  When using the hspy format, 
the data and all of the metadata is stored and easily accessed in the future using the 
etspy.load() method. 
 
Both the TomoStack and RecStack classes inherit the plotting functionality of the HYPERSPY 
Signal2D class.  When used interactively with ipywidgets a slice navigator can be used to 
navigate through the stack in the tilt dimension and update the display in real time.  By employing 
the swap_axes() method, navigation can also be done over the x-axis which will show the 
sinogram view. 
 
 
  5.  CONVENTIONAL STEM TOMOGRAPHY 
 
To demonstrate the functionality of ETSPY for conventional image based tomography data 
processing, a dataset collected from a sample of NIST SRM-2135c [64] will be used.  This SRM 
consists of a silicon substrate with alternating layers of nickel and chromium deposited on the 
free surface.  A pillar-shaped sample was fabricated from this SRM using focussed ion beam 
milling.  The tomographic tilt series consists of 91 STEM high-angle annular dark field  
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(HAADF) images collected over a 180° tilt range with a constant tilt increment of 2°.  
The primary beam energy was 300 keV and the probe current was approximately 50 pA.  
Each image was 1,024 pixels square and was collected using a per pixel dwell time of 32 µs and 
a pixel size of 1 nm.  The full stack was collected in an automated manner using SerialEM. 
 
The first task confronted by a microanalyst who wants to reconstruct electron tomography data 
is image registration.  ETSPY provides multiple options for calculating and applying translational 
shifts for aligning a TomoStack, all which are accessed using the register_stack() method.  
The available options are based on phase correlation (PC) [65], the StackReg [66] method, 
centre of mass tracking (COM) [67], and an approach that combines centre of mass tracking with 
the so-called common-line method (COM-CL) [14].  All of these methods have advantages and 
disadvantages.  PC is straightforward and fast, although it can be challenged by noisy data, 
by samples which exhibit regularly repeating features, or when the differences in image features 
between two images is large (e.g., when a large tilt increment is used).  StackReg will often 
outperform PC in these cases but is computationally more expensive.  Finally, both COM and 
COM-CL incorporate the geometry of the tilt series acquisition and are very effective for 
particulate or pillar shaped samples since little or no additional material enters the field of view 
during tilting in these cases.  However, they will often fail when slab type specimen geometries 
are used or when significant amounts of extraneous material enters and leaves the field of view 
over the course of the series.  Further detail about all these methods can be found in the provided 
citations. 
 
Regardless of the method chosen, translation shifts are calculated between each set of images in 
the stack.  The shifts are then composed such that they are made relative to the previous shift in 
the stack starting from a user defined projection number.  The results of this process for the 
SRM-2135c pillar sample is shown in Fig. 2. 
 
Finally, the shifts can be calculated using any of these methods and then applied to another stack 
using the align_other() method.  This approach is useful when multiple image signals are 
collected during a single tilt series acquisition and when one of the signals has superior 
characteristics for calculating the alignment shifts compared to another.  For example, shifts can 
be calculated on a high signal-to-noise ratio medium-angle annular dark field (MAADF) image 
stack and applied to a noisier high-angle annular dark field (HAADF) stack.  Since both signals 
are acquired simultaneously, the shifts for each will be the same.  This will also be very useful 
when we turn to hyperspectral tomography data, since the shifts can be calculated using an image 
signal then used to register the spectral images extracted from the simultaneously acquired 
hyperspectral dataset. 
 
Once the stack has been translationally registered, it is then important to ensure that the tilt axis 
of the dataset is centred and made as close to horizontal as possible prior to reconstruction.   
Failure to do so will result in severe artefacts in the reconstructed sinograms and make 
interpretation and quantification of the data difficult or impossible.  To perform the tilt axis  
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Figure 2. Central projections extracted from the NIST SRM-2135c tilt series.  The y-axis projections 

(sinograms) and the x-axis projections were extracted from the tilt series data along the 
positions denoted by the cyan and yellow dashed lines.  Projections are shown as acquired 
and after image registration and fine alignment. 

 
 
alignment, two options are available: A method which uses centre of mass tracking [68] and 
another using the intensity present in the maximum projection image of the dataset.  The latter 
is particularly effective when particles are present in the sample which trace linear paths in the 
projected maximum image.  In both cases, the goal is to calculate a global shift and rotation of 
the stack which places the tilt axis along the horizontal axis of the stack.   The effects of the stack 
registration and tilt axis alignment process on the reconstruction quality for the pillar-shaped 
SRM-2135c sample are shown in Fig. 3.  Prior to tilt axis correction, both the as acquired data 
and the spatially registered data suffer from severe degradation in the form of the C-shaped 
artifact surrounding the sample region in each.  Only after tilt axis alignment is the expected 
circular shape of the  conical cross-section recovered. 
 
Once the alignment process is complete, ETSPY offers five algorithms to perform the 
reconstruction.  These are simple back projection (BP), filtered back projection (FBP, default), 
SIRT, SART, and discrete algebraic reconstruction technique (DART).  Each of these algorithms 
relies upon the implementations provided in the ASTRA toolbox [69] to perform the 
reconstruction. 
 
Reconstruction is initiated by calling the reconstruct() method of the TomoStack.  
The ASTRA toolbox offers CPU-based and GPU-accelerated options for the BP, FBP, SIRT, 
and SART methods.  ETSPY will attempt to determine whether a CUDA-compatible GPU is 
available and use it for faster reconstruction when possible.  Alternatively, the reconstruction  
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Figure 3. Reconstructed slices from the NIST SRM-2135c tilt series at various points in the alignment 

workflow.  Reconstructions using the as acquired data, the spatially registered data, and the 
fully aligned data are shown. 

 
 
will be carried out using parallel computation on the CPU using the Python multiprocessing 
package.  The reconstruction returns a RecStack object, which contains the 3D reconstructed 
image data.  Results generated from the NIST SRM-2135c sample are shown in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Reconstruction of STEM-HAADF tomography data of NIST SRM-2135c.  Depicted are the 

central slices extracted from the reconstruction in the ‘X-Y’, ‘Z-Y’, and ‘X-Z’ orientations. 
 
 
  6.  HYPERSPECTRAL STEM TOMOGRAPHY 
 
To demonstrate the use of ETSPY for processing hyperspectral tomography, data was collected 
from another needle-shaped sample of the NIST SRM-2135c depth-profiling standard.  
EDS spectrum images (SIs) were collected over a 180° tilt range using a tilt increment of 5°.  
The data were collected using an EDAX Octane-T silicon drift detector and the acquisition was 
controlled by the EDAX TEAM software.  The SIs were 162 × 128 pixels in size with  
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3 nm square pixels.  The probe current was approximately 0.5 nA and the per pixel dwell time 
was 200 ms. At each new tilt, the sample was manually aligned to an image at the previous tilt 
using a combination of beam and stage shifting.  The sum spectrum for the entire spectral 
tomography dataset is shown along with the sum image calculated from a single projection angle 
in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Sum spectrum of the full spectral tomography dataset of the SRM 2135c sample and sum 

image extracted from a single spectrum image projection. 
 
 
To analyse this dataset using ETSPY, the TEAM SPD files were converted to HDF5 format using 
HyperSpy.  The resulting dataset consists of 37 HYPERSPY Signal2D instances each of which 
is 4,000 channels deep and 162 × 128 pixels in size.  HYPERSPY was used to extract the required 
2D elemental maps at each tilt and converting each of the resulting HYPERSPY Signal2D 
instances to a TomoStack with a shape of (37 | 162 × 128).  Using HYPERSPY, this can be done 
either via straightforward background subtraction methods, curve fitting, or via machine learning 
algorithms.  In the present case, we have employed NMF decomposition and the resulting 
component images for one projection of the full hyperspectral tomography dataset are shown in 
Fig. 6.  In this case, the first four components show the spatial distribution of the nickel, silicon, 
chromium, and platinum signals, respectively.  Components five and six (not shown), 
were related to the absorption of the nickel and chromium L-lines. 
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Figure 6. Results of NMF decomposition of spectral tomography dataset.  Components 1 through 4 

are shown along with a colour overlay emphasizing their spatial extent. 
 
 
Once the TomoStack’s have been created, it is then just a matter of following the usual 
tomographic workflow of stack registration, tilt-axis alignment and reconstruction.  Since the 
elemental maps are often not well suited for calculating alignment transformations, we can either 
use a tilt series of an image signal collected simultaneously (e.g., HAADF, etc.) or by the spectral 
sum images for alignment followed by using the align_other() method of the TomoStack 
to apply the calculated alignment to each spectral tilt series.  For the present case we have used 
the spectral sum images to calculate the alignment.  Finally, the individual NMF image series 
are reconstructed independently and slices from each are displayed in Fig. 7 (example code for 
the full process is included in the Appendix). 
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### Code block showing a basic approach to quantification of 
### tomographic reconstruction 
 
pixel_size =Ni_rec.axes_manager[0].scale 
 
# Copy Ni reconstruction and binarize it 
Ni_binary =Ni_rec.deepcopy() 
Ni_binary[Ni_binary>0] = 1 
 
# Copy Cr reconstruction and binarize it 
Cr_binary =Cr_rec.deepcopy() 
Cr_binary[Cr_binary>0] = 1 
 
# Calculate the calibrated volume of each component and the  
# volumetric ratio of Cr to Ni 
 
Ni_volume = pixel_size**3 * Ni_binary.sum() 
Cr_volume = pixel_size**3 * Cr_binary.sum() 
volume_ratio = Ni_volume/Cr_volume 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Slices extracted from reconstructions of the NMF components associated with nickel, 

chromium, and silicon. 
 
 
At this point, the reconstructions can be quantified using packages such as NUMPY, SCIPY, 
SCIKIT-IMAGE, etc., all of which can be accessed directly from the same Jupyter Notebook used 
for ETSPY processing.  For example, it is very straightforward to binarize the reconstructions of 
the nickel and chromium layers and calculate volumetric ratios of each: 
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This is just one simple example to illustrate the way in which tomographic reconstructions 
generated using ETSPY can be directly interrogated within the Jupyter environment.  
Finally, 3D visualisation can be carried out in one of two ways.  First, the reconstructions can be 
saved to disk and then read into dedicated visualisation software.  Alternatively, for those who 
wish to remain in the Python environment used for the rest of the data processing, packages such 
as IPYVOLUME [70] can be used for some basic visualisation.  An example of using IPYVOLUME 
is shown in Fig. 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Volumetric rendering using IPYVOLUME of the Cr-Kα, Ni-Kα, and Si-Kα tomographic 

reconstructions (red, green, and blue, respectively). 
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### Code block showing workflow for conventional tomographic  
### reconstruction 
 
# Import ETSpy 
import etspy.api as et 
 
# Define path to tilt series file 
datapath = '/path/to/tilt/series/filename.mrc' 
 
# Load data 
haadf = et.load(datapath) 
 
# Rebin spatially by a factor of 2 
haadf = haadf.rebin(scale=[1,2,2]) 
 
# Register the images in the stack using pystackreg 
reg = haadf.stack_register("StackReg") 
 
# Determine the tilt axis rotation and rotate stack so that  
# tilt axis is horizontal 
ali = reg.tilt_align("CoM", slices=[160,256,380]) 
 
# Manually inspect reconstruction quailty and shift tilt axis 
# along the y axis (i.e., perpendicular to the tilt axis) 
_ = ali.test_align(method='FBP', iterations=100) 
ali = ali.trans_stack(yshift=6) 
 
# Reconstruct data 
rec = ali.reconstruct('FBP') 
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### Code block showing workflow hyperspectral tomographic  
### reconstruction using ETSpy 
 
## Calculate alignment on the spectral sum image series 
 
# Calculate sum image. This results in a HyperSpy 
# Signal2D class: 
edx_sum = edx.sum(3).as_signal2D((0,1)) 
 
# Convert to a Signal2D to TomoStack 
edx_sum = etspy.TomoStack(si_sum, tilts) 
edx_reg = edx_sum.stack_register("StackReg") 
edx_ali = edx_reg.tilt_align("CoM") 
 
# Apply alignments to the phase maps 
Ni_NMF = edx_ali.align_other(Ni_NMF) 
Si_NMF = edx_ali.align_other(Si_NMF) 
Cr_NMF = edx_ali.align_other(Cr_NMF) 
Pt_NMF = edx_ali.align_other(Pt_NMF) 
 
# Reconstruct the datasets 
Ni_rec = Ni_NMF.reconstruct() 
Si_rec = Si_NMF.reconstruct() 
Cr_rec = Cr_NMF.reconstruct() 
Pt_rec = Pt_NMF.reconstruct() 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


