

Book of Tutorials and Abstracts

European Microbeam
Analysis Society

EMAS 2024

14th
REGIONAL WORKSHOP

on

THE EDGE OF NEW EM AND MICROANALYSIS TECHNOLOGY

12 to 15 May 2024
at the
Brno University of Technology, Brno, Czech Republic

Organised in collaboration with:
Brno University of Technology (VUT)
Central European Institute of Technology (CEITEC)

EMAS

European Microbeam Analysis Society eV

www.microbeamanalysis.eu/

This volume is published by:

European Microbeam Analysis Society eV (EMAS)

EMAS Secretariat

c/o Eidgenössische Technische Hochschule, Institut für Geochemie und Petrologie

Clausiusstrasse 25

8092 Zürich

Switzerland

© 2024 *EMAS* and authors

ISBN 978 90 8227 6978

NUR code: 971 – Materials Science

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without the prior written permission of *EMAS* and the authors of the individual contributions.

CORRELATIVE AND MULTI-SCALE ANALYSES OF ADVANCED MATERIALS

Bartłomiej Winiarski

Thermo Fisher Scientific, Materials & Structural Analysis
Pecha 12, 62700 Brno, Czech Republic
e-mail: bartlomiej.winiarski@thermofisher.com

Dr Bartłomiej (Bart) Winiarski is a staff scientist for Materials & Structural Analysis, Thermo Fisher Scientific, Brno, Czech Republic. He received his MSc in Materials Science from AGH - University of Science and Technology (Krakow, Poland), and holds a PhD in Mechanics of Composite Materials from the University of Aberdeen (Scotland). He received the R.E. Peterson Award from the Society of Experimental Mechanics (USA) in 2014 and has authored more than 30 peer-reviewed papers. From 2007 to 2013 he worked at the University of Manchester and National Physical Laboratory as post-doctoral researcher. From 2014 to 2016, he worked at the University of Manchester, Department of Materials, as FEI Research Fellow where he explored the application of Plasma Xe⁺ FIB-SEM and metrological Helical micro X-ray CT instruments to correlative multiscale/multimodal tomography in 3D materials science. He also developed novel methods for stress measurement at sub-micrometre scale using FIB-SEM and DIC techniques. In the period 2016-2020, he was a visiting academic at the University of Manchester, U.K.

1. ABSTRACT

Biological materials exhibit intricate three-dimensional (3D) hierarchical microstructures, resulting in unique combinations of anisotropic mechanical properties that often surpass those of synthetic materials. To develop synthetic alternatives for damaged or diseased organs, as well as for non-biological applications that leverage the exceptional properties of these materials, researchers must understand the structure of the materials they fabricate across various length scales, ranging from millimetres to Ångstroms. Advanced materials, including fibre-reinforced composites, ceramic or metal alloys, and additively manufactured components, also can possess hierarchical microstructures and complex anisotropic mechanical properties. Consequently, comprehensive investigations across different length scales are necessary for these materials as well.

This contribution presents a multi-modal and multi-scale workflow that employs micro X-ray computed tomography (μ CT), focussed ion beam/scanning electron microscopy (FIB/SEM), and analytical techniques like electron backscattered diffraction (EBSD), energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). By combining the spatially correlated results obtained from these techniques, the workflow enables crucial 2D/3D characterisation that is vital for understanding the structures of these materials and enhancing the associated manufacturing processes. This article specifically focusses on (*i*) correlative and multiscale analyses of a fatigued and fractured Ti-6Al-4V titanium alloy medical cellular cubic scaffold manufactured using selective laser melting, and (*ii*) directly laser deposited Inconel IN718 alloy for aeroengines.

2. INTRODUCTION

Correlative and multi-scale analyses (CMA) encompass a wide range of imaging and analytical techniques, including optical microscopy (OM), micro X-ray computed tomography (μ CT), focussed ion beam/scanning electron microscopy (FIB/SEM), electron backscattered diffraction (EBSD), energy-/wavelength-dispersive X-ray spectrometry (EDS/WDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), atom probe tomography (APT), and more. Figure 1 illustrates the various experimental techniques and the corresponding length scales they can explore [1].

A specific subset of CMA is correlative X-ray computed tomography and electron microscopy (C-XCT-EM) [2], which is an innovative workflow that integrates advanced imaging and analytical techniques to provide valuable insights for scientist and engineers involved in product design, material development, and manufacturing processes. This workflow combines data from various techniques such as OM, μ CT [3], EBSD, EDS, serial sectioning tomography (SST) with plasma-focussed ion beam/scanning electron microscopy (PFIB/SEM) [3], and scanning/transmission electron microscopy (S/TEM). By integrating these techniques,

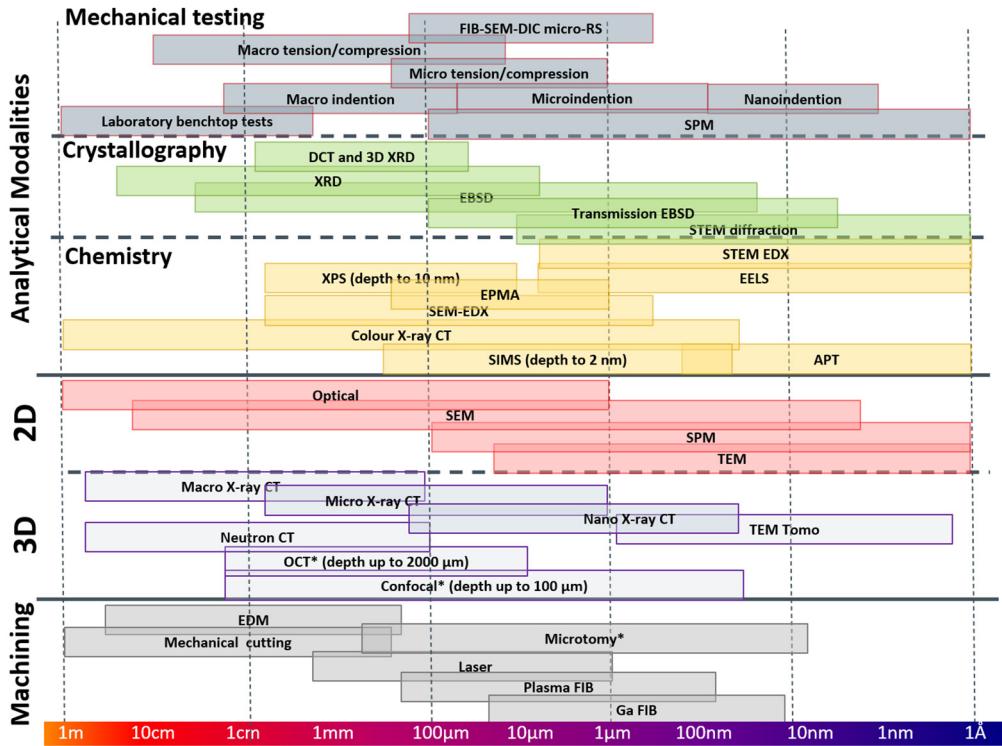


Figure 1. Graphics illustrates the various experimental techniques and the corresponding length scales they can explore. After [1].

C-XCT-EM enables the analysis of three-dimensional characteristics across length scales ranging from millimetres to Ångstroms. These characteristics include surface roughness, porosity, composition, residual stress state [4], and more. Figure 2 illustrates the length scales and resolutions that can be accessed for correlative and multimodal analyses using C-XCT-EM [5].

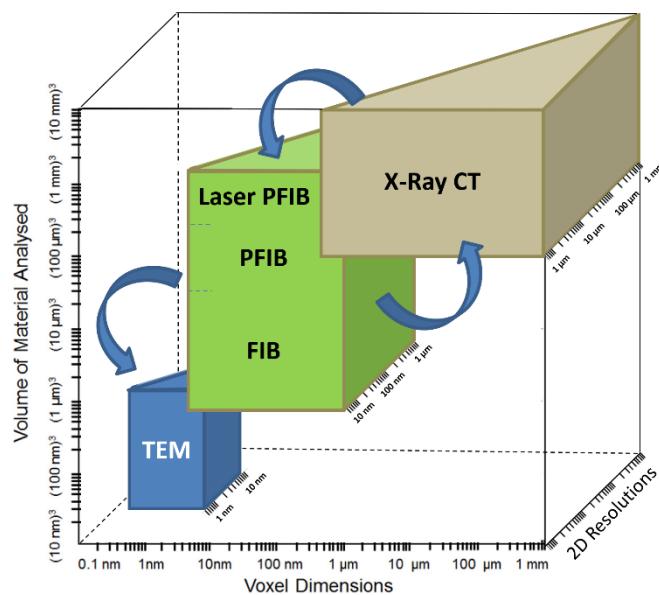


Figure 2. The graphic illustrates commonly used multi-scale and multi-modal imaging methods in materials science. The DualBeam (FIB, PFIB) and TriBeam (Laser PFIB) platforms are utilised for both sample preparation and data collection. The arrows indicate potential sample transfers and the co-registration of system stage coordinates. After [5].

To showcase the capabilities of this workflow, this article focuses on correlative and multiscale analyses of a fatigued and fractured Ti-6Al-4V titanium alloy medical cellular cubic scaffold manufactured using selective laser melting, and directly laser deposited Inconel IN718 alloy for aeroengines.

3. *Ti-6Al-4V TITANIUM ALLOY MEDICAL CELLULAR SCAFFOLD*

Open-porous Ti64 scaffolds or foams [6] are highly desirable in the field of biomedical implants due to their ability to reduce stress-shielding and enhance osseo-integration [7]. To ensure compatibility with a patient's bone, the mechanical properties and geometric characteristics of implant scaffolds are customised using computer-aided design (CAD) and finite-element analysis (FEA). Subsequently, CAD-FEA designed implants are manufactured using various additive manufacturing (AM) techniques, such as selective laser melting of Ti64 (SLM) [8]. However, certain challenges still need to be addressed, including detrimental residual stress states, discrepancies between the mechanical properties and FEA predictions, and inconsistencies between the CAD-designed and manufactured geometries. Ti-alloys, in general, exhibit high notch sensitivity [9]. The presence of surface roughness, notches, and material defects are inherent to any AM process and can act as stress concentrators and initiators of cracks, significantly impacting the fatigue resistance of an AM build [10].

In a previous study [8], the fatigue and quasi-static test results of a hot isostatic pressed (HIP) Ti64 scaffold were compared with finite element (FE) calculations based on two different geometries: the as-designed geometry of a regular cubic cellular scaffold and the as-built geometry reconstructed from μ CT scans. It was observed that both the elastic modulus and the fatigue resistance exhibited a strong correlation with the number and severity of defects. Furthermore, the study demonstrated that predictions of the mechanical properties based solely on the as-designed geometry were found to be inaccurate [8].

The present study focuses on the investigation of a fatigued and fractured HIPed SLM Ti64 cubic cellular scaffold [8] using the C-XCT-EM framework (Fig. 1). The CMT workflow leverages the imaging, analytical, and metrological capabilities of various instruments, along with the cross-platform correlative holder kit. These instruments include helical μ CT, PFIB/SEM, and laser PFIB/SEM, where three beams coincide at a single point. Additionally, other apparatus such as transmission electron microscopes are utilised. The correlative investigations are supported by MAPS-based [6] and AVIZO-based workflows [7]. Figure 3 shows diagram of the workflow used in this study [5].

Figure 4 presents a visual summary of the correlative study conducted. The fatigued and fractured scaffold undergoes μ CT scanning to analyse the distribution of strut thicknesses and identify pores within the SLM build. A detailed Maps study reveals that these defects within the SLM build have a marginal effect on the fracture pattern observed

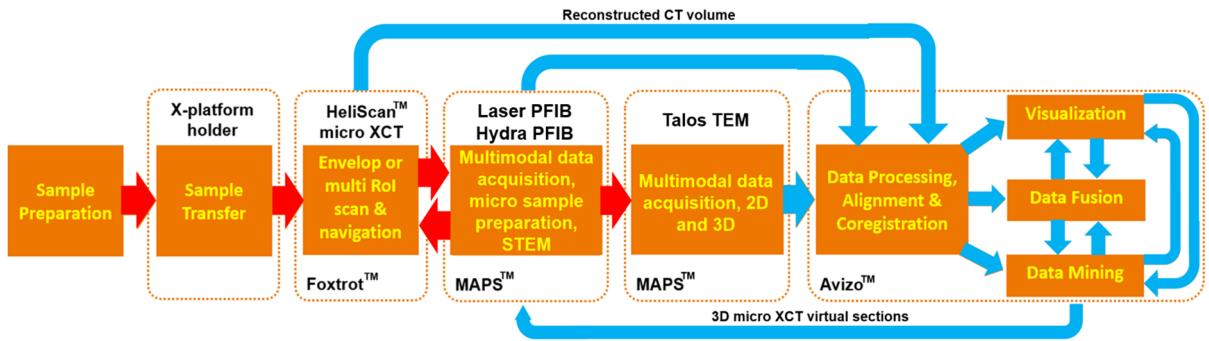


Figure 3. Diagram shows the C-XCT-EM workflow in material science. Red arrows indicate sample transfer, while blue arrows show data transfer. After [5].

(Figs. 4c and 4e). Notably, brittle, ductile, and mixed-mode fractures occur in locations resembling notches, which correspond to the smallest cross-sectional area of the struts (Figs 3d and 3e). These areas experience the highest fatigue stresses and strains. The type of fracture exhibited by each strut strongly depends on the crystallographic orientation of the α - and β -phases, with an increased presence of the brittle α -phase. These findings are further supported by a comprehensive study utilising auto slice and view serial sectioning tomography (Figs. 3g and 3h). Electron channelling contrast analysis reveals the presence of plastically deformed grains near the fractured surface. The microstructure of the bulk material exhibits residual stress and strain, as qualitatively indicated by variations in the electron channelling contrast, as previously measured [4].

Further investigations, including TEM examinations, are being conducted to provide more detailed insights into the fractured zones.

This study presents preliminary findings from a 3D C-XCT-EM investigation of a fatigued and fractured cellular scaffold commonly used in trabecular bone implants. The presented multi-scale imaging solutions, workflow, and cross-platform holder kit offer versatility for practical applications and contribute to a comprehensive understanding of additive manufacturing and related areas. These results provide valuable insights into this field and pave the way for further research and practical implementations.

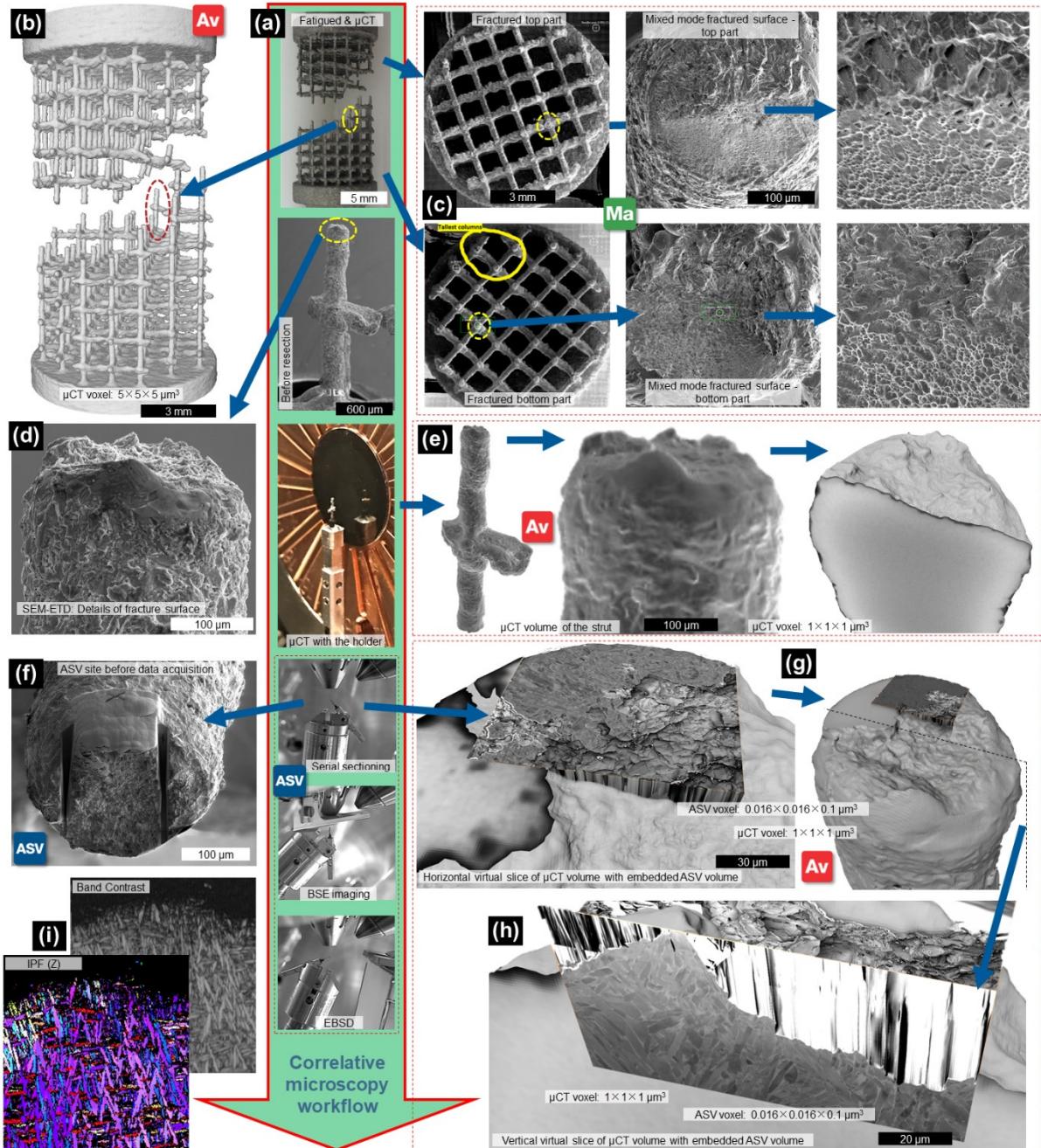


Figure 4. Shows post-fatigue investigation of Ti64 scaffolds by 3D correlative tomography using cross-platform correlative holder kit. a) Correlative microscopy workflows steps; b) μCT visualisation of fatigued and fractured scaffold; c) Fractography study using tiled high resolution SEM images in MAPS; d) SEM image of fractured strut selected for subsequent μCT scan; e) Visualisation of high resolution μCT data of PFIB resected strut; f) Site ready for SST using PFIB; g) and h) SST volume of fractured surface volume embedded in μCT volume; i) EBSD map collected after SST. After [5].

4. INVESTIGATION OF CRACKING IN ADDITIVELY MANUFACTURED IN718

The emergence of additive manufacturing (AM) methods [11], such as selective laser melting (SLM) of powder bed and blown powder laser deposition (BPLD), hold great promise in overcoming the limitations of conventional metallurgical processes, especially for small production volumes, complex part configurations, near net-shape dimensions, high-performance requirements, and part repair/cladding applications, such as those involving Inconel alloys. Inconel 718 (IN718) belongs to a family of nickel-based superalloys extensively used in aircraft turbines, jet engines, steam turbine power plants, and more, due to their exceptional resistance to high-temperature corrosion, fatigue, and creep [12]. The desired microstructure of IN718 components should comprise a γ solid supersaturated solution matrix (enriched in Ni, Cr, and Fe) predominantly strengthened by γ'' -Ni₃Nb- and γ' -Ni₃(Al, Ti)-precipitates [12, 13]. However, the presence of Nb can lead to segregations and the formation of undesirable brittle phases, such as NbC, δ -Ni₃Nb, and Laves phases (Ni, Cr, Fe)(Nb, Mo, Ti), along with residual stresses that can adversely affect tensile ductility, fatigue, and creep properties [12, 13].

In this study, we employ C-XCT-EM to examine crack formation in BPLD IN718 coupons manufactured using a 5 kW laser power and feed rates of 750 and 1,250 mm/min. The C-XCT-EM analysis is facilitated by state-of-the-art equipment, including the HeliScan micro X-ray CT system, Helios Plasma FIB-SEM, and Talos STEM microscopes. Additionally, we utilise a unique instrumental environment that integrates inter-linked software, namely AUTO SLICE&VIEW 4, AVIZO 3D, and MAPS, to provide comprehensive data analysis and visualisation.

At the macroscale, we observed the presence of large millimetre-long open cracks near the base of the coupon and along the interface (Fig. 5a). These cracks tend to form along grain boundaries of the columnar/dendritic grains, as indicated by the EBSD map. Notably, the typical weld-like microstructure associated with deposition passes was not observed. Visualisation of the micro CT data reveals a network of cracks spanning across the component's thickness (Fig. 5b). Microscale analysis indicates that the cracks primarily develop in the regions enriched with Nb, which exhibit elements segregation and a network of Laves phases (Fig. 5c). Furthermore, the presence of porosity and a large 30 μ m diameter pore within a grain was observed. At the nanoscale (Fig. 5d), we identified the presence of γ'' -precipitates, aluminium oxide, titanium nitride, and niobium carbide. The combined capabilities of the hardware and software utilised in this study provided valuable 3D insights into the manufacturing defects that occur during BPLD.

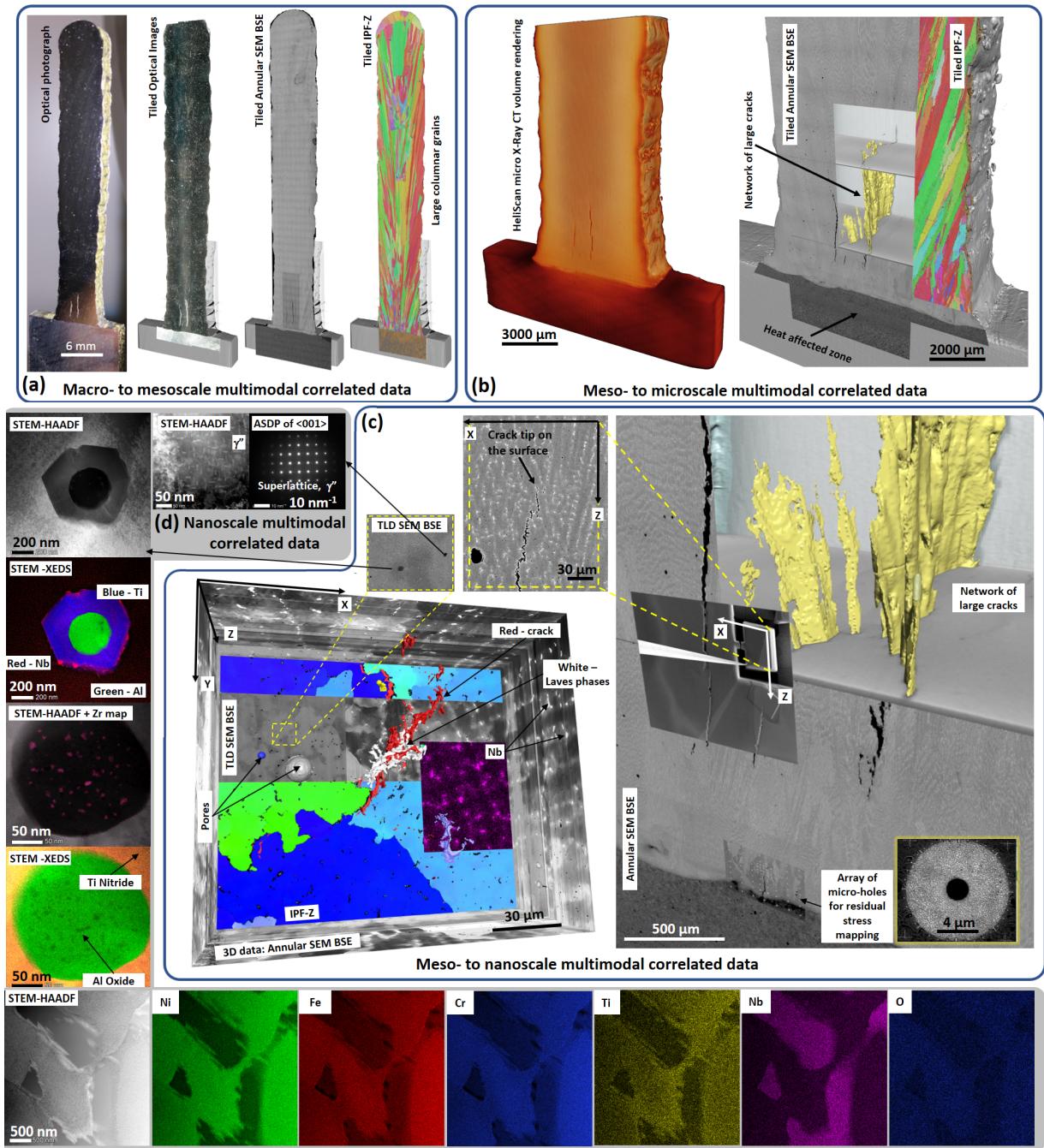


Figure 5. 3D multiscale and multimodal results (laser power 5 kW with feed 1,250 mm/min, powder feed rate 40 g/min, 84 layers with area $115 \times 7 \text{ mm}^2$, 0.5 mm layer height offset). a) Investigation using tiling and stitching; OM $4.5 \mu\text{m}/\text{pix}$, SEM $0.65 \mu\text{m}/\text{pix}$, EBSD $10 \mu\text{m}/\text{pix}$. b) μCT volume with co-registered SEM and raw EBSD maps. c) On the right zoomed in region with cracks and location from where a large chunk (with a crack tip) was resected for further 3D PFIB serial sectioning study (100 nm^3 voxel); on the left visualisation of the crack tip region with co-registered raw EBSD and EDS information. Note: SEM TLD BSE and annular BSE (CBS) signals were collected simultaneously. d) STEM study revealed γ'' , aluminium oxide, titanium nitride, niobium carbide precipitates, Nb-rich Laves phases, and elements segregation. After [14].

5. CONCLUSION

In conclusion, correlative and multi-scale analyses (CMA) comprise a wide array of imaging and analytical techniques, offering versatile tools for investigating materials and structures at different length scales and imaging modalities. Within this framework, correlative X-ray computed tomography and electron microscopy (C-XCT-EM) stands out as an innovative workflow that integrates advanced imaging and analytical techniques, providing valuable insights for scientists and engineers involved in product design, material development, and manufacturing processes. By combining data from various techniques such as optical microscopy, micro X-ray computed tomography, electron backscattered diffraction, and transmission electron microscopy, C-XCT-EM facilitates the analysis of three-dimensional characteristics across a wide range of length scales, from millimetres to Ångstroms.

This paper has showcased the capabilities of the C-XCT-EM workflow through the examination of a fatigued and fractured Ti-6Al-4V titanium alloy medical cellular cubic scaffold manufactured using selective laser melting, as well as the investigation of directly laser-deposited Inconel IN718 alloy for aeroengines. These case studies demonstrate the potential of C-XCT-EM for correlative and multiscale analyses in different material systems, highlighting its relevance and applicability across various fields. The integration of multiple techniques and the ability to explore a wide range of length scales offer valuable insights into the structures and properties of materials, contributing to the development of improved manufacturing processes and materials for diverse applications.

6. REFERENCES

- [1] Winiarski B, *et al.* 2015 in: *High resolution serial sectioning tomography (ToSca) Conference*. [University of Manchester; 3-4 September 2015]
- [2] Burnett T L, *et al.* 2014 *Sci. Reports* **4** 4711
- [3] Burnett T L, *et al.* 2016 *Ultramicroscopy* **161** 119-129
- [4] Benedetti M, *et al.* 2016 *Int. J. Fatigue* **87** 102-111
- [5] Winiarski B, *et al.* 2020 *Microsc. Microanal.* **26** 424
- [6] Singh R, *et al.* 2013 *Mater. Tech. Adv. Perf. Mater.* **12** 127-136
- [7] Murr L E, *et al.* 2010 *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* **368** 1999-2032
- [8] Dallago M, *et al.* 2019 *Int. J. Fatigue* **124** 348-360
- [9] Niinomi M 2008 *J. Mech. Behav. Biomed. Mater.* **1** 30-42
- [10] Leuders S, *et al.* 2013 *Int. J. Fatigue* **48** 300-307
- [11] Bi G, *et al.* 2006 *Surf. Coatings Technol.* **201** 2676-2683
- [12] Reed R 2008 *The superalloys - Fundamentals and applications*. [Cambridge: Cambridge University Press]
- [13] Parimi L L, *et al.* 2012 in: *Superalloys 2012: Proc. 12th Int. Symp. on superalloys*. [Seven Springs Mountain Resort, Seven Springs, PA; September 9-13, 2012] 511-519
- [14] Winiarski B, *et al.* 2018 *Microsc. Microanal.* **24** 366

